
Unsupervised Word Segmentation: An
Investigation of Sub-word Features∗

Daniel Blanchard

March 20, 2011

∗The author thanks Amy Blanchard for all her help proofreading this document.

Contents

1 Introduction 4
1.1 Contributions . 5

1.1.1 Investigation of Sub-word Features . 5
1.1.2 Framework for Word Segmentation . 5
1.1.3 Phonological Word Evaluation . 6
1.1.4 Early Error Recovery & Prevention . 6
1.1.5 Accurate Incremental Segmenter . 6

2 Background & Related Work 7
2.1 Terminology . 7

2.1.1 Learning Algorithms . 7
2.1.2 What Is a Word? . 8

2.2 Corpora . 9
2.2.1 Bernstein-Ratner (1987) Corpus . 9
2.2.2 Sesotho Corpus . 9

2.3 Common Features for Word Segmentation . 10
2.3.1 Familiar Words . 10
2.3.2 Phoneme N-grams . 10
2.3.3 Syllable N-grams . 11
2.3.4 Universal Constraints . 12

2.4 Unsupervised Word Segmentation . 12
2.4.1 Bayesian Models . 12
2.4.2 Connectionist Models . 15
2.4.3 Local Statistics . 16

2.5 Other Types of Language Segmentation . 18
2.5.1 Speech Recognition . 18
2.5.2 Supervised Approaches to Word Segmentation 19
2.5.3 Morpheme Segmentation . 19

3 Progress 20
3.1 PHOCUS Framework . 20

3.1.1 Components . 20
3.1.2 Instantiations . 23

3.2 Preliminary Experiments on Feature Utility . 27
3.2.1 Experimental Setup . 28
3.2.2 Features Implementations . 29
3.2.3 Evaluation Metrics . 30

2

3.2.4 Experiment 1: Supervised . 31
3.2.5 Experiment 2: How Much Training Is Necessary? 36
3.2.6 Overall Results . 40

3.A Results with Lexicon Enabled . 41

4 Moving Forward 43
4.1 Fundamental Issues . 43

4.1.1 Handling Early Errors . 43
4.1.2 Combining Feature Scores . 44

4.2 Other Issues . 44
4.2.1 PHOCUS Instantiations . 44
4.2.2 Phonological Word Corpus . 45
4.2.3 Feature-Specific Issues . 45

4.3 Contributions . 47
4.3.1 PHOCUS Framework . 47
4.3.2 Investigation of Sub-word Features . 47
4.3.3 Phonological Word Evaluation . 48
4.3.4 Early Error Recovery & Prevention . 48
4.3.5 Accurate Incremental Segmenter . 48

4.4 Conclusion . 48

3

1 Introduction

Word segmentation is the problem of separating a given utterance into words. In some written
languages (e.g., English), this is a trivial task, as there are clear boundaries marked between words;
however, this is not always the case. Some widely-used languages (e.g., Chinese and Japanese) do
not mark word boundaries when written, and in speech there are no reliable boundaries between
words (Cole and Jakimik, 1980). Thus, in these types of languages segmenting words is crucial to
understanding what an utterance means.

To illustrate how word segmentation works in languages that do not mark boundaries, we consider
the unsegmented English utterance “Therearenospaces.” How would one find the boundaries in such
an utterance? The simplest technique is to search for familiar words. Starting from the beginning
of the utterance, “The” and “There” are the two common words that could start it, but only one of
them leads to a segmentation exclusively containing English words. If we choose “The,” the next
possible word is “rear,” but “enospaces” cannot be split into familiar English words. Therefore,
the utterance must start with “There” after which “arenospaces” can only be broken into “are no
spaces.” The key to this simple method of segmentation is that we already have a lexicon that
contains all the words that the utterance could consist of.

In contrast to the previous example, this research addresses the word segmentation problem with
no a priori lexicon. This problem is inspired by infants, who learn to segment the ambient language
with no lexicon; amazingly, they begin to segment speech by six-months of age (Bortfeld et al.,
2005). Since infants learn to segment speech with great efficiency and accuracy despite not initially
having a lexicon, I am interested in computational models of word segmentation that utilize insights
from language acquisition research.

While infants are not born with a lexicon of the language they will be learning, there are many
patterns present in natural language that they can use to segment speech. This is because languages
all have their own sets of phonotactic constraints, which restrict the sequences allowed in well-
formed words (Chomsky and Halle, 1965; Halle, 1978). When infants hear sequences they know to
be invalid, they can then posit word boundaries in places that prevent them from occurring. For
example, the velar nasal [N] (e.g., “sing” [sIN]) cannot occur following [t] in English. Thus, when
nine-month-olds are presented with novel phrases such as “fang tine” [faN taIn], they correctly insert
a boundary between the two words (Mattys and Jusczyk, 2001). In addition to these phoneme pairs,
infants have also been shown to use their knowledge of allophonic variation (Jusczyk et al., 1999a),
stress patterns (Jusczyk et al., 1999b), and syllable transition probabilities (i.e., syllable bigrams)
(Saffran et al., 1996) to successfully segment speech.

In the word segmentation literature (e.g., Brent, 1999; Venkataraman, 2001; Goldwater, 2007;
Johnson, 2008a), word segmentation systems that lack both a lexicon of the language they will
be learning and feedback about when utterances have been segmented correctly are called “unsu-
pervised.”1 They usually operate on unsegmented phonetic transcriptions of speech (often infant-

1While in traditional machine learning literature “unsupervised” algorithms are only required to not have any

4

directed), and can be considered abstract models of how infants learn to segment speech. Yet,
despite the similarities between both the input given to and restrictions faced by unsupervised seg-
menters and infants, most unsupervised segmenters do not utilize any of the types of sub-word (i.e.,
word-internal) patterns known to be useful to infants when segmenting speech. It is the primary
goal of my research to remedy this oversight and determine in principle what sub-word features are
most effective for unsupervised word segmentation algorithms.

1.1 Contributions

In the process of investigating which sub-word features are most useful for unsupervised word seg-
menters, my dissertation will make five major contributions to the field: the investigation itself,
a unified framework for segmentation, evidence that evaluating segmenters with respect to ortho-
graphic words is incorrect, new methods for preventing and recovering from early errors, and a
highly accurate unsupervised incremental word segmenter. Each of these contributions are dis-
cussed in more detail below.

1.1.1 Investigation of Sub-word Features

The main contribution of my dissertation will be establishing in principle what sub-word features
are more useful than others, and the types of errors each prevents or causes. This will be partic-
ularly useful for anyone who is building an unsupervised word segmentation system, as they will
know which features they should use to address particular issues with a given corpus or model.
Furthermore, my work will also be the first to examine some sub-word features like long-distance
phonotactic patterns, which may turn out to be beneficial for segmenting languages that have vowel
harmony (e.g., Finnish). Finally, if syllable-based sub-word features (e.g., syllable n-grams) are es-
pecially useful, then my work could also be considered evidence for the necessity of the syllable, a
unit whose status is often debated by phonologists.

1.1.2 Framework for Word Segmentation

The framework presented in Section 3.1 is a significant contribution for the following reasons.
First, as is shown in Section 2.4, there are many existing incremental and “repeated incremental”
batch segmentation models that all employ different features, which makes them seem disparate;
however, many can be described within my framework (see Section 3.1), thereby allowing the
systematic investigation of the effects of changing the instantiations of the framework’s components,
and simplifying the process of comparing competing segmentation models. Second, by unifying
seemingly disparate segmentation algorithms, the framework makes the similarities that many
segmenters share more apparent. Finally, those interested in studying the acquisition of phonotactic
patterns may also be interested in the framework, because the models in it can acquire phonotactic
patterns from unsegmented text, instead of from words (as is the norm).

feedback as to which responses were correct, in the word segmentation community “unsupervised” also implies
a lack of a lexicon. This is because lexicons can be considered to be lists of one word utterances, although
syntactically ill-formed ones, where the correct segmentation is known.

5

1.1.3 Phonological Word Evaluation

All corpora we are aware of that have been used for evaluating segmenters are divided into ortho-
graphic2 words, but my research calls these evaluations into question, which should have an impact
on the methodology others use to evaluate their segmenters. Models that make use of phonotactic
features (e.g., Fleck, 2008; Blanchard et al., 2010; Daland, 2009) or innate knowledge of syllable
structure (e.g., Johnson, 2008b) are searching for phonological words; however, these models have
only been evaluated against corpora that were segmented into orthographic words, although they
are phonetically transcribed ones. Therefore, a more appropriate way to evaluate these segmenters
is to compare their output to a gold standard of phonological words. This will not make the prob-
lem easier for these segmenters, as many segmenters split “the” [D@] from the nouns it precedes
even though “the” is not considered a phonological word, but it will make error analysis simpler,
since the phonotactic patterns found are already rooted in phonological words.

1.1.4 Early Error Recovery & Prevention

Unsupervised incremental3 segmenters are especially challenging to develop. As they are incremen-
tal, there is very little information for the segmenters to use to make decisions at the early stages
of learning. There is also no external feedback to let them know when a particular segmentation
is incorrect, because the segmenters are unsupervised. Consequently, if poor decisions are made
initially, it may be very difficult for an unsupervised incremental segmenter to recognize an error
and prevent it in the future. Even worse, these early errors can trigger more later on. There-
fore, the main challenge when developing an unsupervised incremental learner is the prevention of
unrecoverable early errors.

As part of my dissertation, I will attempt to develop methods for preventing and recovering from
early errors in an incremental learning process. These methods will be a significant contribution not
only to the incremental unsupervised word segmentation community, but also to those interested
in unsupervised learning in general, because early errors are problematic for both incremental and
boot strapping approaches to unsupervised learning.

1.1.5 Accurate Incremental Segmenter

The final major contribution that my work will make is a highly accurate unsupervised incremental
word segmenter. The instantiation of my segmentation framework presented by Blanchard et al.
(2010) is currently the most accurate unsupervised incremental segmenter on the de facto standard
corpus for evaluation in the unsupervised segmentation community, the Bernstein-Ratner (1987)
corpus. Although this segmenter’s results are promising, there is still room for improvement, and
in my dissertation I will use the error prevention methods mentioned previously to develop more
accurate unsupervised incremental segmenters.

2For thorough definitions of orthographic and phonological words see Section 2.1.2.
3The terms unsupervised and incremental are defined in Section 2.1.

6

2 Background & Related Work

There is a substantial body of literature about segmenting natural language into different units. In
order to prepare the reader for the discussion of these models and the proposed work, the first section
outlines the terminology that will be used throughout this proposal. As I am primarily interested
in word segmentation and how it relates to language acquisition, the second section discusses the
corpora that are frequently used to evaluate unsupervised word segmentation systems, the third
presents some commonly used features by these systems, and the fourth describes the many different
instances of unsupervised word segmentation algorithms. The final section discusses segmentation
in related problems, such as speech recognition.

2.1 Terminology

Before discussing the state-of-the-art of word segmentation, the reader needs to know some ter-
minology that will be used throughout this proposal. Therefore, the first subsection defines some
basic terms relating to machine learning, a broad area of research of which word segmentation is
just one small area. The second tries to define what a “word” is for the purposes of my work.

2.1.1 Learning Algorithms

Machine learning algorithms can be broadly categorized as either batch or incremental. Batch
algorithms process the entire corpus before outputting a result, whereas incremental algorithms
output a result immediately after each item in the corpus is processed. In the word segmentation
domain, batch segmenters process all of the unsegmented utterances before outputting a segmented
version of the corpus, while incremental ones segment each utterance as they encounter it.

There are advantages and disadvantages to the batch and incremental approaches to word seg-
mentation. Batch models can examine global patterns when determining where to insert bound-
aries, which allows them to have the same level of success segmenting utterances regardless of where
they occur in the corpus. On the other hand, incremental models typically have poor performance
for utterances toward the beginning of the corpus due to an initial lack of evidence. Furthermore,
initial mistakes can cause a cascade of later errors with an incremental learner. For example, if an
incremental segmenter incorrectly learns that “boy” [#bOI#] should actually be segmented as “b
oy” [#b#OI#], it will have learned that “b” [b] is a well-formed English word and will likely pull [b]s
out of other words it encounters. Therefore, early errors is the primary concern with incremental
learners. If one is only concerned with producing the word segmenter with the highest segmenta-
tion accuracy possible, a batch model would be appropriate; however, there is a major drawback to
batch segmenters: they are fundamentally inappropriate for models of language acquisitions. This
is because batch models assume a learner does not attempt to start segmenting until hearing a
relatively large number of utterances. Consequently, batch segmenters require more memory and

7

computational power than similar incremental ones. If incremental segmenters could yield similar
performance to batch ones, then the additional resource requirements and incompatibility with
language acquisition models would prove unnecessary.

Learning algorithms can also be classified according to the amount of feedback they get. Su-
pervised algorithms are given pairs of unprocessed data and the corresponding results, whereas
unsupervised algorithms are only given the data. For word segmenters, supervised models are usu-
ally given a lexicon of the words in the corpus, and they must then determine what is the most
likely sequences of words from that lexicon that could make up a given unsegmented utterance.
Unsupervised models do not start with a lexicon, which makes the problem substantially more
difficult. However, if a supervised model encounters words in the corpus that are not in its lexicon
(i.e., novel words), then the same techniques that are used for unsupervised segmentation could be
used to learn these words.

2.1.2 What Is a Word?

When developing an algorithm to segment utterances into words, one immediately faces a thorny
question: What exactly constitutes a “word”? This question has proved difficult for linguists. In
a seminal book on morphology, Matthews (1991) waited until page 208 to say, “There have been
many definitions of the word, and if any had been successful I would have given it a long time ago,
instead of dodging the issue until now.”

Here I follow Dixon and Aikhenvald’s (2002) illuminating discussion of words in natural language,
which proposes that there are phonological words, grammatical words, and orthographic
words. Grammatical words are defined as consisting of “a number of grammatical elements” that
cannot be separated, “occur in a fixed order”, and “have a conventional coherence and meaning”
(Dixon and Aikhenvald, 2002).1 Conversely, a phonological word can be defined roughly as a unit
of at least one syllable such that there are phonotactic constraints governing its structure, and/or
some phonological rules can only apply within or between such units. One example highlighting the
difference between the two types of words in English is “it’s.” “It’s” consists of two grammatical
words (“it” and “’s”), but only one phonological word (“it’s”). This is because “’s” is a clitic,
which means it has a distinct meaning but cannot stand on its own as a phonological word, as it does
not consist of at least one syllable. Orthographic word boundaries are determined by a society’s
writing conventions, so they do not necessarily line up with either phonological or grammatical
words, though they often line up with one or the other (Dixon and Aikhenvald, 2002).

As the models discussed below operate over phonetically transcribed text, and one of my goals
is to examine the contribution phonotactic features make to the segmentation process, the target
unit for extraction is the phonological word. This is because phonotactic constraints determine the
well-formedness of phonological words, but not grammatical or orthographic words. For example,
“’s” lacks a vowel or syllabic sound, so it is not considered a well-formed when heard in isolation.
Furthermore, phonological word boundaries always coincide with syllable boundaries, but this is
not necessarily the case with grammatical or orthographic words. Thus, any segmenter that uses
information about syllables in the corpus to find words must be searching for phonological words.

1There are a number of possible exceptions to these criteria, but in general, the definition seems to hold.

8

2.2 Corpora

Most recent word segmentation research has been evaluated on at least one of the following two cor-
pora: the Bernstein-Ratner (1987) and Demuth (1992) corpora from the CHILDES (MacWhinney
and Snow, 1985) database. These two corpora are described in detail below.

2.2.1 Bernstein-Ratner (1987) Corpus

The Bernstein-Ratner (1987, hereafter BR) corpus from the CHILDES database (MacWhinney and
Snow, 1985) consists of 9,790 utterances containing 33,399 words of English infant-directed speech.
The BR corpus is the same one that Brent (1999), Venkataraman (2001), Goldwater (2007), Fleck
(2008), and Johnson (2008b) used to evaluate their models, and it has become the de facto standard
for segmentation testing ever since it was phonemicized by Brent and Cartwright (1996).

The transcription system described in Brent and Cartwright (1996) makes some unorthodox
choices. In particular, complex sounds traditionally transcribed with multiple symbols are tran-
scribed with only one. These include diphthongs and vowels followed by [ô]. Another decision was
to use different symbols for stressed and unstressed syllabic [ô]—that is, there are different symbols
for the [ô] in “butter” [b2tô

"
] and the [ô] in “bird”[bô

"
d]—though stress is not marked elsewhere in

the corpus. To alleviate these issues, Blanchard and Heinz (2008) created a modified version of the
corpus where the bi-phone symbols were split into two2 and the syllabic [ô] symbols were collapsed
into one. Blanchard and Heinz (2008) showed that current segmentation models do worse on the
modified BR corpus, because the models have to learn that the diphthong vowels always co-occur
without incorrectly grouping them together into their own words.

2.2.2 Sesotho Corpus

Sesotho is a Bantu language spoken mainly in South Africa. Bantu languages are agglutinative,
which means that they have long words (both grammatical and phonological) consisting of many
morphemes. The writing system for Sesotho is like that of most Bantu languages in that word
boundaries are inserted where they would be in most European languages, which makes ortho-
graphic words shorter than grammatical or phonological ones.

Johnson (2008a) trimmed the Demuth (1992) corpus from the CHILDES database (MacWhinney
and Snow, 1985) of speech between mother-child dyads to include only the child-directed speech.
He did not convert the orthography to phonemes, because the writing system for Sesotho is nearly
phonemic to begin with.3 The final corpus contains 8,503 utterances consisting of 21,037 word
tokens.

2With diphthongs, only those whose first phoneme can occur in isolation in English were split. Therefore, the vowels
in “bay” and “boat” were not split.

3In addition to vowels, nasals sounds and the lateral liquid [l] can be syllabic in Sesotho. However, these sounds are
not marked as such in the transcription, and so we treated all [l] and [n] sounds as non-syllabic.

9

2.3 Common Features for Word Segmentation

There are myriad features that one could choose to use for word segmentation, but they can
generally be broken down into two categories: between-word or sub-word.4 The between-word
features are those such as word n-grams, that aim to capture the influence that neighboring words
have on one another. The sub-word features are those that rate how well-formed a word is. Linguists
call these types of word-structure-governing features phonotactic constraints (Chomsky and Halle,
1965; Halle, 1978). I describe some common features used for unsupervised word segmentation
below.

2.3.1 Familiar Words

When adults face the task of word segmentation, we can simply apply a technique known as
Word Spotting to pull out words from the speech stream (Cole and Jakimik, 1980). Essentially,
we first identify familiar words in the utterance, and if there are any blocks of sounds leftover
that are not currently in our lexicon, we consider them potential novel words. If they follow our
language’s phonotactic constraints, we add them to our lexicon; if not, we try to further segment
the utterance into chunks that do follow phonotactic constraints. For example, if one has learned
the word “what’s” [w2ts] and encounters the utterance “What’s this?” [w2tsDIs], it is a reasonable
deduction that “what’s” [w2ts] is an instance of a familiar word and “this” [DIs] is a novel word. This
simple technique is the basis for many word segmentation models (e.g., Brent, 1999; Venkataraman,
2001; Blanchard et al., 2010).

Listening for familiar words is an approach to segmentation that infants use as well. Bortfeld
et al. (2005) showed that six-month-olds can segment words that follow highly frequent words such
as their names or “mommy”, which is a good indicator that this feature is useful even in the
earliest stages of learning to segment. As for how infants acquire the initial words they use to
segment others, Brent and Siskind (2001) argue that infants learn these first words from one-word
utterances. If infants are predisposed to consider utterances as words, then they will add entire
multi-syllabic utterances to their lexicons at first. Although this results in many initial mistakes, as
long as some utterances infants hear consist of one word, this strategy could be enough to bootstrap
the lexicon. According to Brent and Siskind (2001), as much as 10% of infant-directed speech is
made up of one-word utterances. Furthermore, even the multi-word utterances that are added to
the lexicon can be helpful for segmenting future words. For example, if infants hear the utterance
“Thank you” [TæNkju] and incorrectly add the entire utterance to their lexicon, they could use that
familiar phrase to segment “say” [seI] from the utterance “Say ‘thank you”’ [seITæNkju].

2.3.2 Phoneme N-grams

A word’s well-formedness can be approximated by the well-formedness of the phoneme combinations
that make up the word. For example, in English the phoneme pair [kN] (orthographically, “kng”)
never occurs; therefore, words that contain [kN] sequences are not well-formed words of English.
Hockema (2006) strengthened this claim by showing that phoneme pairs in English have a bimodal
distribution. Specifically, pairs occur either frequently within words or frequently across word

4Blanchard et al. (2010) refer to “between-word features” as “familiar word cues,” and “sub-word features” as
“phonotactic cues”, but these are just different names for the same classes of features.

10

boundaries, but not both (e.g., [Nt] only occurs across word boundaries). For these reasons, a
word’s constituent phoneme combinations are informative when evaluating a it’s well-formedness.

Phoneme combinations are not simply useful for word segmentation in theory; infants have been
shown to use phoneme combinations when deciding how to segment novel utterances. Mattys
and Jusczyk (2001) showed that nine-month-olds can segment speech by using the difference in
probabilities between within-word and across-word consonant clusters. For example, the novel
phrase “fang tine” [faN taIn] is segmented as it is because [Nt] does not occur within English words.

The most straightforward method of evaluating the likelihood of the phoneme combinations that
make up words is through a phoneme n-gram model. The basic idea is that a word’s probability
can be estimated as the product of the probabilities of all phoneme sequences of length n within the
word. Phoneme n-gram models have been shown to be useful sub-word features for unsupervised
segmenters (e.g., Blanchard and Heinz, 2008; Blanchard et al., 2010).

2.3.3 Syllable N-grams

Another method for approximating a word’s well-formedness is by evaluating the syllable combina-
tions within it. While there have been no analogs of Hockema’s (2006) phoneme combination study
with syllables, there are English examples of cases where syllables have a probability of occurring
together within a word, but not across word boundaries. For instance, in the Bernstein-Ratner
(1987) corpus of infant-directed speech from the CHILDES database (MacWhinney and Snow,
1985) the most frequently occurring pair of syllables is [o.ke] “okay”, and it only occurs word-
internally. On the other end of the spectrum is [du.ju] “do you”, which exclusively appears across
word boundaries. Therefore, the syllable combinations within a potential word are indicators of its
likelihood of being a word.

Much like how phoneme combinations have been shown to be useful cues for infants learning
to segment speech, syllable transitions have also been shown to be used by infants. Saffran et al.
(1996) asserted that infants could segment words of an artificial language based on their syllable
probabilities. After only two minutes of listening to randomly repeated occurrences of four three-
syllable nonsense words without any silence between them, infants listened significantly longer to
three-syllable test words with low probability syllable bigrams versus those with high probability
syllable bigrams. Thus, the authors concluded that the infants seem to be able to learn the tran-
sitional probabilities of different syllable sequences and can use that knowledge to recognize valid
word forms.

There has been some debate about how to implement a segmentation strategy based solely on
syllable n-grams, and some drastic claims have been made about the feature’s isolated usefulness
by Gambell and Yang (2004). However, their results were based on an exceptionally poor strategy
for segmenting using syllable n-grams. As a counter-example to the claim that syllable n-grams
can be useful on their own, Gambell and Yang created a segmenter that simply inserted boundaries
between syllables that had locally minimal conditional probabilities. This approach was inherently
flawed, as a string of single-syllable words cannot all be local minima, which prevents them from
being segmented. Even a simple approach such as “insert a boundary when the probability is less
than x%” would not suffer from such a problem, which indicates that this particular segmentation
strategy was nothing but a straw man.

11

2.3.4 Universal Constraints

Although all of the previously discussed features need to be learned from the data, there are
certain universal properties of language that may be integral to the segmentation process. One
such property is that phonological words consist of at least one syllable. As syllables require
syllabic sounds as their nuclei, this constraint can also be thought of as “all words require at
least one syllabic sound.” In English all vowels are syllabic, but there are also syllabic consonants:
[l,n,ô] (e.g., “bottle” [batl

"
], “button” [b2tn

"
], “butter” [b2tô

"
]). As is explained in Section 2.2, the

syllabic consonants are transcribed differently from their non-syllabic counterparts in the English
corpus we evaluate our models on.5

The main motivation for using a “require syllabic” constraint is that many suffixes (e.g., the
plural markers [s] and [z] in English) do not contain syllabic sounds, and are easily over-segmented.
For example, if the word “ball” [bal] is in the segmenter’s lexicon, and then an utterance that is
only “balls” [balz] is encountered, a segmenter that uses familiar words is likely to segment the
utterance as “ball s” [bal z]. With the constraint in place, these errors can be prevented.

2.4 Unsupervised Word Segmentation

Many unsupervised word segmentation models have been proposed over the past 50 years (e.g.,
Olivier, 1968; Wolff, 1977; de Marcken, 1995)6, but they can all be categorized into the follow-
ing general approaches: Bayesian methods, local statistics, and neural networks. I discuss some
representative models from each paradigm below.

2.4.1 Bayesian Models

There are two major categories of Bayesian word segmentation models: MAP (Maximum A Poste-
riori) and hierarchical models. Both models make use of the basic concepts of Bayesian inference,
but while the MAP models attempt to find the segmentation that maximizes the posterior proba-
bility, the hierarchical models search for a distribution over all possible segmentations.

P (H|E) =
P (E|H)P (H)

P (E)
(2.1)

The heart of Bayesian inference lies in Bayes’ Theorem (Equation 2.1, where H means hypothesis
and E means evidence). For the domain of word segmentation, we consider the evidence to be the
corpus and a hypothesis to be a particular segmentation. The probability of a hypothesis absent
any considerations of the evidence, P (H), is called the hypothesis’ prior probability. P (E|H)
is known as either simply the conditional probability of the evidence given the hypothesis, or the
likelihood if the evidence is the same for all hypotheses. The probability of the hypothesis given the
evidence, P (H|E), is called the posterior probability. As word segmentation models just need

5The syllabic consonants are plausibly distinguished acoustically from their non-syllabic counterparts (Toft, 2002;
Xie and Niyogi, 2006).

6Harris’s (1954) algorithm for extracting morphemes directly from unsegmented text is often cited as the first
example of a word segmentation algorithm; however, it actually finds morphemes, so it is discussed in Section 2.5.3.

12

to know which segmentation is more likely than all the others, the exact scores are not necessary,
so the marginal probability of the evidence, P (E), is dropped from the equation to yield:

P (H|E) ∝ P (E|H)P (H) (2.2)

The equation can actually be simplified even further for word segmentation, because the likelihood
of a segmentation is always either 1 or 0 (Goldwater et al., 2009). As long as the segmentation
consists of the same phonemes in the same order (i.e., it is the same utterance only with added
boundaries), this probability will be 1; otherwise, it will be 0. When searching the hypothesis
space, segmenters do not consider inconsistent segmentations where the probability would be zero,
so the likelihood term can be dropped from Equation 2.2 and the posterior is simply proportional
to the prior:

P (H|E) ∝ P (H) (2.3)

This means that finding the segmentation with maximum prior probability will always yield the seg-
mentation with maximum posterior probability. With these preliminaries established, the following
subsections discuss MAP and Hierarchical Bayesian models in more detail.

MAP

All MAP segmenters try to find the segmentation with the maximum posterior probability; however,
as we have established that the posterior probability is directly proportional to the prior, MAP
segmenters differ from one another only in their methods for calculating P (H) and searching the
hypothesis space. For instance, MDL segmenters try to minimize the information theoretic length
of the “description” of both the corpus and the lexicon that generated it, and are MAP models
with a prior that gives hypotheses exponentially decreasing probabilities as they increase in length
(Goldwater, 2007).

de Marcken (1995) created an MDL segmenter that is rather unique in its approach to language
structure. His segmenter treated language as hierarchical structure of unspecified number of layers:
at the lowest level were phonemes, and at the highest were utterances with morphemes, words, and
phrases falling somewhere in between. Starting from an unsegmented corpus, his model first looked
for co-occurrences of phonemes, and then recursively looked for co-occurrences of progressively
larger types of units. The model fits into the MDL paradigm, because it returned the hierarchical
structures that most compactly describe the corpus. Unfortunately, it is quite difficult to compare
the performance of de Marcken’s model to other segmenters, since no layer of the structure it
returned was actually marked as the “word layer.” When he evaluated the model’s accuracy,
de Marcken considered a word as successfully segmented if it appeared at any one of the layers; hence
it would have an unfair advantage in any comparative evaluations with other models. Nevertheless,
de Marcken is an important example of a MDL segmenter.

The first MDL segmenter aimed at modeling infant language acquisition was put forth by Brent
and Cartwright (1996). It operated on a phonemic version of the Bernstein-Ratner (1987) corpus,
which has become the de facto standard for evaluating unsupervised word segmenters, and was
the first model to attempt to use phonotactic information to segment speech. Unfortunately, the
algorithm was so computationally demanding that it could only be run on a small subset of the
corpus (roughly 170 utterances out of 9790); therefore, the algorithm itself was not very influential,

13

but the idea of examining the phoneme clusters appearing at word boundaries to help determine
words’ well-formedness was an important one.

The earliest example of a word segmentation algorithm was created by Olivier (1968), but it
had some strange quirks (e.g., it had to process the corpus in chunks of exactly 480 characters,
even if that meant a word was split incorrectly), so here I present the details of Batchelder’s
(2002) improved version of the model, BootLex, instead.7 BootLex works differently than most
of the models I describe in that it is a merging algorithm rather than a dividing one (i.e., its null
hypothesis is that there is a boundary between every character in an utterance, while others assume
utterances are single words by default), and the lexicon it builds is nearly all the evidence it uses
to find words. When first processing a corpus, BootLex does an initial scan to find out the true
average word length (in phonemes) of the corpus and the set of phonemes used in the corpus. Then,
all phonemes are added to the lexicon with an initial count of one. BootLex then iterates through
the corpus one utterance at a time, selecting the segmentation that with the highest product of
lexical frequencies, adding all “word” pairs in each utterance to its lexicon as single words (if they
are not already present), and incrementing the lexical counts of all words in the utterance by one.
To prevent words from getting excessively long, segmentations with average word lengths higher
than the true mean have their scores discounted.8 In sum, BootLex is a merging MAP segmenter
that uses a lexicon and an optimal length penalty to segment.

The model put forth by Venkataraman (2001) takes a dividing approach to segmentation, and
searches unsegmented utterances for the sequence of words9 with the highest probability. When
a word in a segmentation is in the lexicon, its probability is simply equal to its lexical frequency;
however, if the model considers a segmentation with a novel word, the word’s probability is based
on the product of the probabilities of its constituent phonemes. That is, novel words with more
frequent phonemes are ranked more highly than those with more infrequent ones (e.g., a word
with an “n” [n] in it would be ranked higher than a similar one with a “ng” [N]). Because the
model initially starts with an empty lexicon and a uniform distribution over the phonemes, the
first utterance it encounters is added to the lexicon as a single word, and the frequencies of the
phonemes within the word are updated. The process then repeats for the entire corpus. This
simple approach was the most accurate unsupervised word segmenter10 until Goldwater’s (2007)
came out, and only uses a lexicon and phoneme unigrams to segment.
MBDP-1 (Brent, 1999) is a predecessor of Venkataraman’s (2001) model that is nearly identical

to it. Brent explains MBDP-1 by describing a probabilistic model of how one would generate
a corpus, and then showing how to calculate the probabilities of particular segmentation given
some assumptions about the way the unsegmented text was generated. As I show in Section 3.1,
while MBDP-1 was presented in an entirely different manner than Venkataraman’s (2001) model,
they only actually differ with respect to the way their phoneme counts are initialized and some
minor variation in how they calculate word scores: MBDP-1 initially sets all phoneme counts to
zero and explicitly gives preference to segmentations containing more frequent words and occurring

7Batchelder (2002) explains in detail the differences between the two models, and notes that MK10 (Wolff, 1977)
is also closely related to BootLex.

8The exact equation for this appears to be missing from Batchelder’s (2002) article, as it is supposed to be specified
in footnote 16, but the footnotes jump from 15 to 17.

9Venkataraman (2001) also considered word bigrams and trigrams, but his results showed no improvement with
either over the unigram baseline; therefore, I only discuss his unigram model here.

10Tied with MBDP-1, which is discussed below.

14

later in the corpus, whereas Venkataraman’s model uniformly initializes its phoneme counts and
has no extra penalties as part of its word scores. As the models are nearly identical and I am
primarily concerned with the sub-word features each model uses, further discussion of MBDP-1 is
unwarranted.11

The MAP segmenters discussed above did not make use of many sub-word features. Primarily,
they used lexicons (or in de Marcken’s (1995) case a grammar) to find the most probably sequences
that have already been seen. The only sub-word features any of the models above use are phoneme
n-grams12 (of length 1 for all but Brent and Cartwright’s (1996) model) and a constraint on average
word length (Batchelder, 2002). However, some of these models could easily be extended to examine
more robust sub-word features, as is discussed in Section 3.1.

Hierarchical

While the MAP models were concerned with just finding the single best for each utterance, the
hierarchical Bayesian models discussed below find the distribution over all possible segmentations
for entire corpus. With the hierarchical approach the corpus is segmented repeatedly until the
distribution stabilizes (or some arbitrary number of iterations passes), and then the maximum
scoring segmentation is output. The two most well-known examples of this type of segmenter are
presented below.

Goldwater et al.’s (2009) segmenter uses an underlying generative model, much like MBDP-1
does, only her language model is described as a Dirichlet process. While this model uses a
unigram phoneme distribution like all of the segmenters above, it considers segmented utterances
to be sequences of words bigrams. A word bigram model is useful in that it prevents the segmenter
from assuming that frequent word pairs are not simply one word, which Goldwater et al. observed
happen with a unigram version of their model. The segmenter uses a Gibbs sampler augmented
with simulated annealing to sample from the posterior distribution of segmentations and determine
the most likely segmentation for each utterance. A key difference between this approach and the
MAP models mentioned previously is that this makes many (usually 1000) passes over the corpus
before outputting a final segmentation. We direct the reader to Goldwater et al. (2009) for details.

A related hierarchical model was implemented by Johnson (2008b,a), only instead of using a word
bigram model it uses a general adaptor grammar for its language model. The main contribution
of this approach is that it allows one to easily add new features to the model simply by adding
more rules to the grammar. For example, in one adaptor grammar Johnson (2008a) specified that
words consist of syllables which consists of phonemes, and in another he gave an even more detailed
description of syllables by saying they consist of optional consonants at the beginning and end (i.e.,
an onset and a rime) with a vowel in the middle (the nucleus). This segmenter is the only one I am
aware of that has any innate knowledge of syllable structure beyond a rule that syllables requiring
vowels.

2.4.2 Connectionist Models

Cognitive scientists studying word segmentation and how it relates to language acquisition have
typically used connectionist models (i.e., neural networks). The most frequently cited example of

11The interested reader is referred to Brent (1999) for a more detailed description.
12N-grams can simply be thought of as sequences of phonemes of length n.

15

this approach is from Christiansen et al. (1998), although there are other variants (e.g., Cairns et al.,
1997; Christiansen et al., 2005). All of these approaches use a special type of neural network known
as a Simple Recurrent Network (Elman, 1990), which is a standard feed-forward network
except that it has extra connections that copy the output of one run through the network back as
input for the next run. This allows the SRN to incrementally process the corpus and learn from
the words it has segmented previously. As for the sub-word features, Christiansen et al.’s (1998)
segmenter is particularly interesting in that it converted the phonetic transcription it processed to a
series of phonological features13 that included stress information; therefore, it could describe
the input in finer detail than any of the other segmenters mentioned previously. Despite this
intriguing way of handling the input, neural network models have been shown to output poorer
segmentations than other types of models (Brent, 1999), so a more detailed discussion of this
paradigm is omitted.

2.4.3 Local Statistics

A common approach for word segmentation algorithms to take is to calculate some sort of local
statistic (e.g., mutual information, transitional probability, conditional entropy) at every possible
boundary point in an unsegmented utterance and insert boundaries either at local minima or when
the statistic is less than some threshold. Models using local minima have not been very successful
(Brent, 1999; Gambell and Yang, 2004), because this method makes it impossible for single-unit
words to be segmented, as two minima cannot occur contiguously. Of the segmenters that have
used thresholding successfully (Cohen and Adams, 2001; Swingley, 2005; Fleck, 2008; Daland,
2009; Hewlett and Cohen, 2009), two use especially effective features: WordEnds (Fleck, 2008)
and Bootstrap Voting Experts (Hewlett and Cohen, 2009).14 These two models are described
in detail below.

WordEnds (Fleck, 2008) segments words by calculating the probability of a boundary given a
left and right context (i.e., prefix or suffix) of arbitrary length and inserting word boundaries when
their joint probability exceeds 0.5. These boundary probabilities are essentially calculated using
phoneme n-grams without a fixed value for n; n is set to the largest value for which a particular
context has occurred during training more than some threshold (10 in Fleck’s experiments).15

WordEnds makes three passes over the corpus to determine final word boundaries. On the first
pass, WordEnds attempts to bootstrap the word boundary probability estimation by calculating
the probability of contexts that occur at utterance boundaries, and setting the probability of these
contexts given word boundaries to be a constant high value if the utterance boundary probabilities
exceed a certain threshold (0.003 in Fleck’s experiments). With these word boundary probability
estimates established, it makes a second pass through the corpus where it inserts word boundaries
whenever the estimated probability exceeds 0.5. WordEnds then uses the newly inserted word

13Phonological features describe the articulatory or acoustic properties of speech sounds and are useful for comparing
speech sounds. For example, [t] and [d] agree on most features except VOICE with [t] being a voiceless sound
and [d] being voiced.

14Daland’s (2009) segmenter also uses a particularly useful sub-word feature, phoneme bigrams, but there is no
unsupervised version of his model.

15Fleck (2008) noted that if no context has occurred at least ten times, a single-character context is used. There is
also a maximum context length parameter, which was set to five during the first pass and four during the third
pass.

16

boundaries to re-estimate the context probabilities by calculating the standard MLE probabilities
during the third pass. For the final pass, WordEnds again inserts word boundaries whenever the
estimated probability of a word boundary given the right and left contexts exceeds 0.5. This multi-
pass, variable-length phoneme n-gram approach was rather successful, and it outperformed even
Goldwater’s (2007) segmenter on most corpora it was evaluated on.

To prevent some “obvious” errors in WordEnds’ segmentation, in her experiments Fleck (2008)
employed a simple morphological processor called Mini-morph that ran through the output from
WordEnds. Essentially, Mini-morph calculates the ratio of the number of times a word has occurred
in the segmented corpus by itself to the number of times it has appeared as a prefix or suffix of
another word; words are either split or merged based on the value of this ratio. While no one
else has used Mini-morph to correct segmentation errors, there is nothing specific to WordEnds
about the Mini-morph algorithm, so it could theoretically be used to spot and correct errors in any
segmenter’s output.

One of the most popular word segmenters (e.g., Cheng and Mitzenmacher, 2005; Miller and
Stoytchev, 2008) that uses local statistics is Voting Experts (Cohen and Adams, 2001; Cohen et al.,
2007). In the basic form of the algorithm, two “experts” vote on where to insert boundaries within
each utterance with one voting to insert boundaries after sequences with low internal entropy16,
and the other voting to insert boundaries after sequences with high boundary entropy17 (Hewlett
and Cohen, 2009). Sequences have low internal entropy if their constituents reliably predict one
another and have high boundary entropy if the final elements cannot reliably predict what follows
them. Voting Experts inserts boundaries whenever the number of votes for a particular position
exceeds a certain threshold. While this approach is rather straightforward, the base model is not
an incremental model, because it first scans the entire corpus to gather the statistics necessary
to calculate the two different types of entropy before inserting any boundaries. However, recently
Hewlett and Cohen (2009) implemented incremental versions of both the baseline and an enhanced
version of it called Bootstrap Voting Experts.

Bootstrap Voting Experts repeatedly segments the entire corpus, each time decrementing the
voting threshold until a specified minimum value has been reached. It uses an extra expert, the
Knowledge Expert, that uses the boundaries from the previous iteration to gather the necessary
information to calculate the sum of the internal entropies of the sequences on either side of a
potential word boundary, including the word boundary symbol, #. To use the example Hewlett
and Cohen (2009) gave, if a potential split has the sequences “it” and “was” on either side of it, the
Knowledge Expert will calculate the internal entropy of “it#” and “#was” and vote for that split
if the sum of those entropies is a locally minimal. One interesting fact about this approach is that
the initial seed segmentation the model uses is simply the output of the original Voting Experts
when the voting threshold is set very high. This means that the initial segmentation has a very
high boundary precision—because it only inserts boundaries when it is very confident they will
be right—and with each subsequent pass through the corpus the model is made less conservative
to increase boundary recall. To make the segmenters incremental, Hewlett and Cohen modified
them to update after each utterance was processed the statistics necessary to calculate the different
entropies used by the experts. In Hewlett and Cohen’s experiments, the incremental versions of both
Voting Experts and Bootstrap Voting Experts proved to be quite accurate (boundary F1 > 70%

16HI(seq) = −log(p(seq))
17HB(seq) = −

∑
c∈S p(c|seq)log(p(c|seq)) where S is the set of successors to seq.

17

on the BR corpus) even after processing relatively few (< 1000) utterances in their experiments.
This indicates that the entropy features used by the Voting Experts models become reliable rather
quickly.

An interesting application of the Voting Experts algorithm was attempted by Miller and Stoytchev
(2009): run Voting Experts on the sequence of discrete symbols (mostly phones) returned by an
unsupervised automatic phone recognizer (Iwahashi, 2006; Brandl et al., 2008). This alternative
approach to speech recognition was completely unsupervised, and the segmentation capabilities
the system demonstrated on datasets from a well-known infant segmentation experiment by Aslin
et al. (1998) almost perfectly matched the infant results. Although these results were obtained
on very small datasets (approximately 2 minutes of uninterrupted nonsense syllables), Miller and
Stoytchev’s method does appear to be able to segment words directly from the speech stream,
which was not previously possible in an unsupervised fashion. The standard supervised approaches
to speech recognition and word segmentation are discussed in the next section.

2.5 Other Types of Language Segmentation

There are many Natural Language Processing tasks that involve segmenting larger linguistic units
into smaller ones. Each of these tasks has its own unique set of proposed solutions, but in general
most of the approaches to solving these problems are supervised and use sub-word features at the
phoneme or character level. The types of language segmentation most related to unsupervised word
segmentation are: speech recognition, supervised word segmentation, and morpheme segmentation.
All of these problems are discussed below.

2.5.1 Speech Recognition

Because words in spoken language form a continuous stream, automatic speech recognition systems
must confront the problem of word segmentation. Most modern speech recognition systems use
first-order Hidden Markov Models (HMMs) to identify the correct sequence of words given
audio input. HMMs are essentially probabilistic automata where the current state can be pre-
dicted solely from the previous (like a bigram model), and the states represent “hidden” properties
associated with certain observable features. For example, the HMMs used at the lowest level of
speech recognition usually model phones: they have three states to represent the beginning, middle,
and end portions of the phone, and the states are assigned probabilities conditioned on the acous-
tic properties the speech stream exhibits during each state. The probabilities for the HMMs are
calculated by training the models on many different labelled examples of the phones in question,
which makes this a supervised learning problem. To construct a model to recognize words within
a particular lexicon, the pronunciations of all the words are looked up in a pronouncing dictionary,
and then word HMMs are constructed by concatenating the corresponding phone HMMs together.
To account for the transitions between words, the final model is constructed by taking all the word
HMMs and adding transitions at the beginning and end of each word HMM such that any word can
transition to any other (with some bigram probability). Once the final model has been constructed
the Viterbi beam search algorithm is used to find the most likely series of states (and thereby
words) that account for all the words in a given utterance.18 Beam search is simply a version of

18See Jurafsky and Martin (2008) for details.

18

the standard Viterbi algorithm that removes unlikely paths from consideration; similarly, a version
of the basic Viterbi search is used by some of the unsupervised word segmentation systems I have
presented (e.g., Brent, 1999; Venkataraman, 2001). Thus, it is not the search algorithm itself that
distinguishes speech recognition from word segmentation, but rather the underlying model: word
segmenters are completely confident in what the phones within the utterances are, whereas speech
recognizers require the additional HMM layer to try to determine what phones are being spoken
in the first place. If we replaced the phone HMMs in a speech recognizer with phoneme bigram
models, the problem is just an instance of supervised word segmentation, which I discuss in the
next section.

2.5.2 Supervised Approaches to Word Segmentation

Most supervised words segmenters are used to segment orthographic text in languages that do not
insert whitespace between words (e.g., Chinese); therefore, many models primarily use large lexicons
to extract as many words as possible, and fall back on sub-word features and other statistics when
encountering novel words. Since the sub-word features are at the character level, the patterns they
exhibit could be very different than those between phonemes in an a phonetic corpus, which means
that features that work for supervised models may not work well for unsupervised models operating
on phonetic corpora. Therefore, I omit a more detailed discussion of supervised approaches, and
refer readers to Lu (2006) for a review of Chinese word segmentation methods.

2.5.3 Morpheme Segmentation

Although it is sometimes referred to as “word segmentation,” morpheme segmentation is a distinct
problem from word segmentation. In morpheme segmentation, words are broken up into their
component morphemes, and the segmenter is usually given words as input. Word segmentation
and morpheme segmentation are often conflated; hence many papers cite Harris (1954) as the first
to study word segmentation, when he was the first to study morpheme segmentation. The ma-
jority of morpheme segmentation algorithms use MDL and are concerned primarily with reducing
redundancy in the lexicon, where the lexical items are strings of phonemes thought to be mor-
phemes. For a thorough review of morpheme segmentation algorithms and their differences from
word segmentation ones, refer to Goldsmith (2009).

19

3 Progress

In this chapter, I outline my current research accomplishments. The first section explains the
framework that will be used to facilitate my investigation of sub-word features, and the second
discusses the experiments I have conducted thus far to compare the utility of the sub-word features
described in Section 3.2.2.

3.1 PHOCUS Framework

Here I present a general framework for word segmentation, called PHOCUS (PHOnotactic CUe
Segmenter1), which enables the systematic investigation of different segmentation techniques
through changing the instantiations of its components. PHOCUS generalizes the segmentation
process in such a way that it unifies many existing segmenters.

3.1.1 Components

In the PHOCUS framework, an incremental word segmenter has the components shown in Fig-
ure 3.1: an Evidence Initializer, an Utterance Enumerator, a Learned Segmentation
Model, and an Evidence Updater. First, the unsegmented corpus is passed to the evidence
initializer, which sets the initial state of all the features for the segmenter. The corpus is then
forwarded to the Utterance Enumerator, which simply selects an utterance from the corpus to be
segmented and passes it on to the Learned Segmentation Model. The Learned Segmentation Model
is the heart of the incremental segmenter, and is discussed in great detail below. For now, I treat
it as a “black box” that takes in an unsegmented utterance and yields a segmented one based on
the current state of the evidence the segmenter has acquired. This segmented utterance is then
both outputted and passed to the Evidence Updater, which updates the states of the segmenter’s
features to account for any new evidence in the current segmentation. For example, an Evidence
Updater may update the lexical frequencies of all the words that have been segmented. After
this maintenance step has been taken, control transfers back to the Utterance Enumerator, which
yields another utterance to segment, if any are remaining. Otherwise, the segmenter exits and the
segmentation process is complete. It is important to note that while the definitions of all of the
components in the system are rather flexible, for a system to be incremental it must only process
the corpus once.2

1The name comes from earlier work (Blanchard et al., 2010) that was written for a language acquisition audience.
What I refer to here as “sub-word features” are referred to in the language acquisition literature as “phonotactic
cues.”

2One potential exception to this is the Evidence Initializer, as we often want the model’s initial n-gram distributions
to be uniform, which requires knowing the set of phonemes used in the corpus. As different corpora often use
different transcription systems, the model must run through the corpus once to know all of the phonemes it
includes.

20

Incremental Segmenter

Unsegmented
corpus

Current
utterance

Utterance
Enumerator

Learned
Segmentation

Model

Segmented
utterance

Evidence Updater

Evidence Initializer
Unsegmented

corpus

Figure 3.1: Incremental Segmenter

As shown in Figure 3.2, the Learned Segmentation Model takes an unsegmented utterance and
passes it to the Candidate Proposer to get a list of possible segmentations. In all models
we examine, the Candidate Proposer lists all possible segmentations, but this is not technically
necessary, as there may be some innate bias one would want to put in a segmenter to avoid certain
possible segmentations (e.g., only consider segmentations that consist of less than n words). These
possible segmentation are then enumerated by the Candidate Enumerator, which either selects
a candidate and passes it to the Candidate Evaluator or, if there are no candidates left, passes
control straight to the Top Candidate Selector. The Candidate Evaluator is what assigns
the scores to a given segmentation, and passes the score on to the Top Candidate Selector, which
accumulates all of the scores until it is time to choose the best one. In every model we examine,
the Top Candidate Selector simply chooses the segmentation with the highest score.

Unsegmented
utterance

Segmented
utterance

Learned Segmentation Model

Possible
segmentations

Candidate
Proposer

Candidate
Evaluator

Current
score

Top
Candidate
Selector

Candidate
Enumerator

Current
candidate

No candidates left

Figure 3.2: Learned Segmentation Model

The Candidate Evaluator returns a score for a possible segmentation by evaluating the language
model constituents in the segmentation (e.g., word n-grams). First, all of constituents in the
segmentation are enumerated, and then each constituent is passed on to the Language Model

21

Constituent Evaluator. The resulting scores are then combined by the Candidate Score
Combiner. In most models we examine, the score combiner simply multiplies all of the constituent
scores (e.g., word n-gram probabilities) together to yield a score for the current segmentation.

Possible
segmentation

Segmentation
score

Candidate Evaluator

Current
LM constituent

LM
Constituent
Enumerator

LM
Constituent
Evaluator

Current LM
constituent score

Candidate
Score

Combiner

Figure 3.3: Candidate Evaluator

The Language Model Constituent Evaluator calculates two kinds of scores for a given constituent:
word scores and language model scores. First, the words in the constituents are sent to the Word
Evaluator, and the resulting scores accumulated by the Language Model Score Combiner.
The constituent (e.g., n-gram) itself is also evaluated by the Language Model Evaluator.
In most segmenters, the Language Model Evaluator scores n-grams (in most cases, unigrams) on
the basis of their relative lexical frequency, although alternative proposals are discussed in later
sections. Regardless of the method for determining the scores, the language model scores evaluate
words on their contexts, while the word scores are for individual words.

Possible
LM constituent

LM
score

Language Model Constituent Evaluator

Current word in
 language model constituent

Word
Enumerator

Word
Evaluator Word score

Constituent
Score

Combiner

Whole
Constituent
Evaluator

Whole constituent score

Figure 3.4: Language Model Constituent Evaluator

The Word Evaluator consists of an unspecified number of word feature evaluators, and a Word
Score Combiner that puts all of the scores together. Some possible evaluators are shown in
Figure 3.5. In general, the sub-word features examined here score the word on the basis of its

22

different components (e.g., phonemes, syllables). The specific features that we examine in the
current experiments are discussed in Section 3.2.2. The feature most prevalently used by existing
segmentation models is a unigram phoneme evaluator, which scores a word based on the product
of the relative frequencies of its phonemes. The primary goal of my research is to pinpoint what
features are most beneficial when added to the Word Evaluator, and to determine what mechanism
is appropriate for combining those scores.

Possible
word

Word
score

Word Evaluator

Syllable Evaluator

Word
Score

Combiner

Phoneme
Evaluator

Phoneme score

Phonological
Feature Evaluator

Syllable score

Feature score...

Figure 3.5: Word Evaluator

The PHOCUS framework is not limited to incremental models, as it can also describe batch
models that repeatedly apply an incremental segmentation procedure (“repeated incremental seg-
menters”). This way we can evaluate whether certain word features are only helpful in batch
segmenters, and it allows the framework to unify even more models. As shown in Figure 3.6, there
are two additional components to the framework when dealing with batch segmenters: the Global
Evidence Updater and the Halt Condition Checker. With the Global Evidence Updater,
the model can update the evidence for features that can only be evaluated after the entire corpus
has been initially segmented. The Global Evidence Updater can also be used to modify the score
combination functions, so that each run of the incremental segmenter can evaluate segmentations
however the model designer would like. The Halt Condition Checker simply prevents the incremen-
tal segmenter from being called again once the halting condition has been met. For example, one
possible halting condition is “Has the incremental segmenter produced two identical segmentations
for the corpus in a row?” These two simple additions allow for batch models in the PHOCUS
framework.

3.1.2 Instantiations

There are many existing models that fit into the PHOCUS framework. The most obvious ones are
MBDP-1 (Brent, 1999), MBDP-Phon (Blanchard and Heinz, 2008), the model of Venkataraman
(2001), BootLex (Batchelder, 2002), and the PHOCUS models described by Blanchard et al. (2010),
but other existing models may also fit into the framework.3 Table 3.1.2 describes how the framework

3Hewlett and Cohen’s (2009) incremental implementation of Voting Experts (Cohen and Adams, 2001; Cohen et al.,
2007) seems like it would fit into the framework, but it is not clear exactly what the initial state of their model

23

Batch Segmenter

Unsegmented
corpus

Incremental
Segmenter

Segmented
corpus

Global
Evidence Updater

Segmented corpus

Halt Condition
Checker

Segmented
corpus

Segmented
corpus

Figure 3.6: Batch Segmenter

must be instantiated for each of the previously mentioned models, and it illustrates the many things
that these incremental models have in common. To save space, Table 3.1.2 was written in the
following notation. To write that a score a is used unless it is equal to zero, in which case b is
used, we write a ≺ b. L(w) is the relative lexical frequency of a word, while l(w) is the word’s raw
lexical count. Similarly, P (x) is the relative frequency of a particular phoneme n-gram, and p(x)
is the n-gram’s raw count. For the total phoneme n-gram score of a word, we write P(w). s(w)
is the well-formedness score (i.e., the score yielded by the Word Score Combiner). There are two
score adjustments that are used by the MBDP models, which are Z(w) and Y (w). The former is
an adjustment to further penalize the score of infrequent words regardless of the size of the lexicon,
while the latter is an adjustment based on the size of the lexicon. S(w) is a binary-valued “require
syllabic” evaluation function, which returns one if w contains a syllabic sound (e.g., a vowel), and
zero otherwise. BootLex also has an extra score adjustment, B(S), that decreases the scores of
segmentations whose mean word length is greater than the true mean length for the current corpus.
Finally xn is used to indicate a phoneme n-gram of size n, with x abbreviating x1.

While Brent (1999) and Venkataraman (2001) describe their models in entirely different ways,
it has been noted that their performance is nearly identical when Venkataraman’s model uses a
word unigram language model (Venkataraman, 2001; Batchelder, 2002; Blanchard et al., 2010). As
shown in Table 3.1.2, these performance similarities should be expected, because the only differences
between the two models are that MBDP-1 does not start with a uniform phoneme distribution,
and that the Phoneme Evaluator and Language Model Evaluator components for MBDP-1 both
have extra score adjustment terms.4 Even though the expositions Brent (1999) and Venkataraman
(2001) present are very different, their models are identical in every other way, a fact not easily
noticed outside of the PHOCUS framework.

As can be seen in Table 3.1.2, all of the segmenters except BootLex are highly similar. The
major differences between BootLex and the other models lie in how they handle novel words. The

is; thus I omit it.
4The score adjustments Z(w) and Y (x) in MBDP-1 are what account for the Bayesian prior.

24

other models use phoneme n-grams to evaluate novel words’ well-formedness, whereas BootLex
never proposes a segmentation that contains novel words. This is because BootLex initially adds
all of the phonemes in the corpus to its lexicon, thereby giving it some “words” that it can use to
segment. The other major difference between the two approaches is that BootLex is a clustering
algorithm and adds all word bigrams that are not currently in the lexicon to its lexicon (as single
words) during the Evidence Updater step. Clustering segmenters such as BootLex use the baseline
strategy that given an utterance and no other information, it should be split into all of its individual
phonemes and they may later be combined; dividing segmenters like MBDP-1 assume utterances
are a single word given nothing else to go on and these words are later divided. It is worth noting
that these two different approaches can both be described easily within the PHOCUS framework.

25

Model Evidence Initial-
izer

Evidence Updater Language
Model
Evaluator
N(w)

Language
Model Score
Combiner

Phoneme Evalua-
tor P(w)

Word
Score
Com-
biner
s(w)

MBDP-1 ∀(x ∈ Σ)p(x) = 0 ∀(w ∈ S)l(w)+ = 1.
If l(w) = 1 then ∀(x ∈
w)p(x) = p(x) + 1.

L(w)Z(w) N(w) ≺ s(w)
∏

x∈w P (x)Y (x) P(w)

MBDP-Phon ∀(x ∈ Σ)∀(y ∈
Σ)p(xy) = 0

∀(w ∈ S)l(w)+ = 1.
If l(w) = 1 then ∀(x2 ∈
w)p(x2) = p(x2) + 1.

L(w)Z(w) N(w) ≺ s(w)
∏

x2∈w P (x2)Y (x2) P(w)

Venkataraman ∀(x ∈ Σ)p(x) = 1 ∀(w ∈ S)l(w)+ = 1.
If l(w) = 1 then ∀(x ∈
w)p(x) = p(x) + 1.

L(w3) ≺
L(w2) ≺
L(w)

N(wn) ≺∏
w∈wn

s(w)

∏
x∈w P (x) P(w)

BootLex ∀(x ∈ Σ)l(x) = 1 ∀(w ∈ S)l(w)+ = 1.
∀(w2 ∈ S)(If l(w2) = 0)
then l(w2) = 1)

L(w) N(w)B(S) — —

PHOCUS-1 ∀(x ∈ Σ)p(x) = 1 ∀(w ∈ S)l(w)+ = 1.
If l(w) = 1 then ∀(x ∈
w)p(x) = p(x) + 1.

L(w) N(w) ≺ s(w)
∏

x∈w P (x) P(w)

PHOCUS-2 ∀(x ∈ Σ)∀(y ∈
Σ)p(xy) = 1

∀(w ∈ S)l(w)+ = 1.
If l(w) = 1 then ∀(x2 ∈
w)p(x2) = p(x2) + 1.

L(w) N(w) ≺ s(w)
∏

x2∈w P (x2) P(w)

PHOCUS-3 ∀(x ∈ Σ)∀(y ∈
Σ)∀(z ∈
Σ)p(xyz) = 1

∀(w ∈ S)l(w)+ = 1.
If l(w) = 1 then ∀(x3 ∈
w)p(x3) = p(x3) + 1.

L(w) N(w) ≺ s(w)
∏

x3∈w P (x3) P(w)

PHOCUS-3s ∀(x ∈ Σ)∀(y ∈
Σ)∀(z ∈
Σ)p(xyz) = 1

∀(w ∈ S)l(w)+ = 1.
If l(w) = 1 then ∀(x3 ∈
w)p(x3) = p(x3) + 1.

L(w) N(w) ≺ s(w)
∏

x3∈w P (x3) S(w)P(w)

Table 3.1: PHOCUS Instantiations

26

Example Models

To illustrate how exactly some models are instantiated in the PHOCUS framework, here I discuss
the similarities and differences between PHOCUS-1, PHOCUS-2, PHOCUS-3, and their counter-
parts PHOCUS-1s, PHOCUS-2s, and PHOCUS-3s from our earlier work (Blanchard et al., 2010).
All of these models evaluate use the same simple back-off approach for their Language Model Score
Combiner: if a word is already present in the lexicon, the Language Model Evaluator score is used;
otherwise, the Word Score Combiner score is. The number in the names of these models simply
specifies the length of the phoneme n-grams used by the Phoneme Evaluator, and the models that
end with “s” require every word to contain at least one syllabic sound by having the Word Score
Combiner multiply the Phoneme Evaluator score by one or zero depending on the presence or
absence of a syllabic sound. The Language Model Evaluator in all of these models simply scores
words based on their relative lexical frequency. All of these PHOCUS models start with an initial
uniform distribution over the phoneme n-grams by having the Evidence Initializer set the count of
every possible n-gram of the size the Phoneme Evaluator uses to one before the first utterance is
segmented. After a particular segmentation has been chosen, for every word in the segmentation
the Evidence Updater increases the lexical count by one and the counts of every n-gram in the word
by the number of times they occur in the word. The only way in which these PHOCUS models
differ from each other are with respect to the phoneme n-gram size the Phoneme Evaluator uses
and whether or not words are required to contain a syllabic element.

Evaluation of PHOCUS

I have established that PHOCUS unifies the segmenters of Brent (1999), Batchelder (2002), Venkatara-
man (2001), and Blanchard et al. (2010); however, there are other segmenters (e.g., Hewlett and
Cohen’s (2009) incremental implementation of Voting Experts (Cohen and Adams, 2001; Cohen
et al., 2007)) that should fit into the framework whose exact instantiations have yet to be deter-
mined. In my dissertation I will examine which state-of-the-art segmenters can be instantiated
within the PHOCUS framework to allow for easier comparison between models. As it is unclear
how one could mathematically prove that the PHOCUS instantiations of these models are correct,
I will have to verify the accuracy of them by comparing the outputs from running the PHOCUS
and original versions of each segmenter on the same corpus. Those with identical segmentation
can be considered to be correctly instantiated. This will concretely establish that the PHOCUS
framework unifies many seemingly disparate models.

3.2 Preliminary Experiments on Feature Utility

To evaluate the performance of the sub-word features mentioned in Section 3.2.2, we run two
experiments. First, to get an idea of how the features work in an ideal situation we run the
PHOCUS models with 90% of the corpus as training data (i.e., the models know where the word
boundaries go for those utterances) via ten-fold cross validation. The corpus is split into ten
equal-sized subsets, and then each segmenter is trained on nine sets in a supervised fashion and
then tested on the remaining set. The sets are then rotated and the process is run again, so in
the end every set has been used for both training and testing. The second experiment tests the
segmenters in progressively more realistic scenarios, by training on smaller and smaller portions

27

of the corpus before being tested on the remaining portions. In this experiment each segmenter
is allowed to continue to update its phoneme or syllable n-gram counts during the testing phase.
This is because when the segmenter is not given any training data, it will not be able to segment at
all if it cannot update its counts; we allow updating in all trials of this experiment for consistency.
The combination of these two experiments allows us to draw conclusions about how the sub-word
features perform with varying amounts of training data.

3.2.1 Experimental Setup

In each of the experiments, we run PHOCUS models that exclusively use either phoneme n-grams
or syllable n-grams to score both novel and familiar words. We vary the length of n-grams from one
to three for each case, and we use the phoneme n-grams with and without the “require syllabic”
constraint.5 In both experiments, we disable the familiar word feature (i.e., the lexicon), so that
the segmentation relies purely on the sub-word feature we are evaluating. The main reason for
making this choice is that even with a relatively small amount of training data (10% of the corpus),
a model without any sub-word features6 that uses the lexicon for word spotting will yield a word
F1 of 72.07%,7 and since the models currently use a simple back-off model from lexical to sub-word
scores, the differences in performance of the sub-word features is less obvious when the familiar
words feature is enabled. Thus, to allow for a more informative comparison of the sub-word features,
we disable the lexicon in these experiments, but for completeness-sake we have included results with
the lexicon enabled in Appendix 3.A.

For both n-gram features in both experiments, we calculate the scores for each word using the
chain rule as:

P (#x1 . . . xm#) = P (#)× P (x1|#)× P (x2|#x1)× P (x3|x1x2)× · · · × P (#|xm−1xm) (3.1)

for trigrams,

P (#x1 . . . xm#) = P (#)× P (x1|#)× P (x2|x1)× · · · × P (#|xm) (3.2)

for bigrams, and

P (#x1 . . . xm#) = P (#)× P (x1)× P (x2)× · · · × P (xm)× P (#) (3.3)

for unigrams, where xi is either a phoneme or syllable. As word boundary symbols are added to
the beginning and end of every word scored, and the word scores are multiplied together to yield
a score for the entire segmentation, we drop the initial P (#) from our calculation; otherwise, each
inter-word boundary would be scored twice. This does not affect the calculation for the initial word
in the segmentation, because the probability of a word boundary at the beginning of the utterance
is 100%. To prevent word probabilities from being 0% when there is little training data, we smooth
the n-gram models by setting the initial counts for all possible n-grams to a small constant number
(0.0001).

5We do not evaluate the syllable n-grams without the “require syllabic” constraint, because all syllables require a
syllabic element; we want all of the n-grams to consist of syllables, not a mixture of syllables and non-syllables.

6All novel words are given a score of zero in this case.
7The F1 is 72.07% when the lexicon is allowed to be updated after the training portion is over, and 64.50% when it

is not.

28

3.2.2 Features Implementations

As was mentioned in Section 2.3, there are two main types of features for word segmentation:
“between-word” and “sub-word.” I primarily investigate sub-word features because not only do
the sub-word (i.e., phonotactic) features more directly evaluate a potential word’s well-formedness,
but also there are many studies that show infants seem to use these types of features to segment
speech (e.g., Saffran et al., 1996; Jusczyk et al., 1999a; Mattys and Jusczyk, 2001). I describe how
each feature that will be included in these experiments are implemented below.

Phoneme N-grams

The most straightforward method of evaluating the likelihood of the phoneme combinations that
make up words is through a phoneme n-gram model. The basic idea is that a word’s probability
can be estimated as the product of the probabilities of all phoneme sequences of length n within the
word. Phoneme n-gram models have been shown to be useful sub-word features for unsupervised
segmenters (e.g., Blanchard and Heinz, 2008; Blanchard et al., 2010).

There are many ways in which n-gram probabilities can be estimated. The most commonly used
method in the NLP community is to calculate the conditional probability of a phoneme given the n
– 1 phonemes preceding it. This technique is especially relevant when one is trying to predict what
the next phoneme will be given the ones before it. As we are really interested in a measure of how
likely a given sequence of phonemes is a word, rather than how likely a given sequence of phonemes
is to occur, an alternative way of estimating phoneme n-gram probabilities may be appropriate for
this task. To determine the probability that a particular phoneme n-gram occurs within a word,
versus across word boundaries, the count of the n-gram within words is divided by the number
of times that phoneme sequence has occurred in the unsegmented corpus. Unfortunately, these
probabilities are not independent, so it is unclear how to appropriately combine them.8 In light of
this issue, in the experiments reported below, I use the standard conditional probability approach.

Syllable N-grams

In this work syllable n-grams are used to score segmentations in the same manner as any other
sub-word feature in the PHOCUS framework: all of the words in every possible segmentation are
evaluated on the basis of their constituent syllable n-grams, and the segmentation with the highest
combined score is chosen. In the current implementation of the syllable n-gram feature, n-gram
scores are combined by taking the product of the conditional probabilities of all the syllable n-grams
within a potential word.

When using syllable n-grams for segmenting, the segmenter must first be able to detect the
syllable boundaries in the unsegmented corpus. I use a simple syllabification algorithm that could
be found in nearly any elementary phonology textbook (see Algorithm 1), but the question of
when to apply the algorithm arises. Is it appropriate to syllabify the entire segmented corpus
in advance and then remove the word boundaries? Or is it necessary to syllabify straight from

8Daland (2009) and others have used this subsequence take on joint bigram probabilities for segmentation, but
crucially in those models the segmenter inserts boundaries between phonemes that have low probability. They
do not calculate a well-formedness score for the words that the segmentation generates (i.e., the probabilities are
considered separately and do not have to be combined).

29

the unsegmented corpus, because the other approach will have every word boundary marked by a
syllable boundary? As the goal for our model is to pull out phonological words, which consist only of
entire syllables (Dixon and Aikhenvald, 2002), and syllables are readily identifiable from the audio
signal (Villing et al., 2004), then it seems reasonable to syllabify the corpus in advance. However,
if the true syllable boundaries are known in advance, an entirely different baseline strategy would
be appropriate, where the task is to find and remove the extra boundaries, rather than to insert
ones where there are none. For example, if every syllable boundary is treated as a word boundary,
this simple model will yield 77.18% word F1 on the Bernstein-Ratner (1987) corpus discussed
in Section 2.2.1, as all but 20% of the syllable boundaries are also word boundaries. However,
Algorithm 1 performs poorly when trying to syllabify the entire utterance at once, because it is
intended for individual words. Syllabifying the corpus in advance with this algorithm, and then
treating every syllable boundary as a word boundary only yields a word F1 of 46.42% on the same
corpus. Therefore, giving the segmenter the true syllable boundaries to start with seems overly
generous to the segmenter, and I implement the syllable n-grams such that potential words get
syllabified when they are scored by the syllable n-gram evaluator.9

Algorithm 1 Syllabification

Posit syllables for all vowels in word.
while There are consonants in word that are not assigned to syllables do

For every syllable, add the first unassigned consonant to its left (if any) to the syllable.
For every syllable, add the first unassigned consonant to its right (if any) to the syllable.

end while

Require Syllabic Constraint

As I want to directly eliminate any potential words that do not have at least one syllable, I
implement a “require syllabic” constraint as a bit feature. That is, if a word contains at least
one syllabic sound, it is given a score of one and zero otherwise. The Word Score Combiner
then multiplies the scores of the other features by the “require syllabic” score, which prevents
segmentations with words that do not consist of at least one syllable from being selected.

3.2.3 Evaluation Metrics

As a general guide to a segmenter’s performance, we used a standard metric: a combination of
precision and recall, known as the F1 score. Precision (also known simply as accuracy in
the cognitive science community) is the percentage of items identified that are correct. Recall (also
known as completeness) is the percentage of correct items identified. To illustrate the difference
between these two measures, a segmentation system could achieve a boundary precision of 100%
by simply inserting one correct boundary into the entire corpus, because 100% of the boundaries it
inserted would be correct (although lacking all others). On the other hand, a segmentation model
could achieve a boundary recall of 100% by inserting word boundaries between every phoneme in

9However, I do smooth the syllable n-gram model by getting a list of all syllables types in the segmented corpus,
and using the list to initialize the counts of all possible syllable n-grams to a small constant number (0.0001 in
the experiments below).

30

the corpus, because it would insert all of the correct boundaries (in spite of many extras). It is clear
that neither precision nor recall is sufficient, and so the harmonic mean (F1) is used.10 We follow
earlier researchers in reporting precision, recall and F1 scores for word identification (as opposed to
boundary) since words are the ultimate goal of the segmentation process (Brent, 1999; Goldwater,
2007).

In addition to F1, knowing the kinds of errors the segmenters make can be very informative. This
is because the contrasts among the outputs of different segmenters are not obvious from just F1, and
since we are comparing the utility of various sub-word features, being able to determine the benefits
of each feature is important. To that end, a segmenters’ errors can be classified into three natural
classes: over-segmentations, under-segmentations, and mixed errors. Consider the utterance “you
see the doggy” [#ju#si#D@#dOgi#]. Over-segmentation errors are those when the segmenter
segments a true word into multiple words (e.g., the segmenter segments [dOgi] as [#dO#gi#]).
Under-segmentation errors are those when the segmenter segments a sequence of true words
as a single word (e.g., the segmenter guesses [#D@dOgi#] is a single word). Mixed errors are
those when the segmenter segments a word which is both under-segmented and over-segmented
(e.g., [#@dOg#i#]).

3.2.4 Experiment 1: Supervised

To see how the phoneme n-gram and syllable n-gram sub-word features contributed to the segmen-
tation process with nearly perfect knowledge of the true corpora, we trained nine PHOCUS models
on 90% of each corpus: three phoneme n-gram models (varying n from 1 to 3) without the “require
syllabic” constraint, three with the “require syllabic” constraint, and three syllable n-gram models
(again, varying n from 1 to 3) with the “require syllabic” constraint. There was no need to run
the syllable n-gram model without the “require syllabic” constraint, because a syllabic element is
necessary to form a syllable; therefore, an n-gram model of syllables already requires that there be
a syllabic sound in each word. The reason to include the “require syllabic” feature is that it can
prevent over-segmentations that consist only of consonants (e.g., segmenting the plural ending “s”
off a word). All models were evaluated using ten-fold cross-validation on both the Bernstein-Ratner
(1987) and Sesotho (Demuth, 1992) corpora (see Section 2.2). The phoneme and syllable n-gram
probabilities were calculated on the basis of the word tokens present in the training data (as op-
posed to the word types), so every time a word was encountered in the training data the counts for
its constituent n-grams were updated. Unlike when these PHOCUS models are run without any
supervision, in this experiment the n-gram counts are not updated on the test set in keeping with
standard methodology for supervised model cross-validation.11

Results

As shown in Figure 3.7, the phoneme trigram segmenter performed substantially better than the
other phoneme models on the modified BR corpus when run with ten-fold cross-validation. This
is because unlike the unigram and bigram models, the trigram model can learn what sound com-
binations can start and end words, which means that a word with unlikely phoneme combinations

10F1 = 2×precision×recall
precision+recall

.
11This does not noticeably harm the models’ performance, as can be seen by comparing the F1 for each model in

this experiment to the 90% training trial in Experiment 2.

31

Correctly
Segmented

Over-
segmented

Under-
segmented

Mixed
Errors

Phoneme
Unigram

Phoneme
Unigram +
RS

Phoneme
Bigram

Phoneme
Bigram +
RS

Phoneme
Trigram

Phoneme
Trigram +
RS

20.98% 0.00% 79.02% 0.00%

6.15% 0.00% 93.85% 0.00%

20.98% 0.00% 79.02% 0.00%

6.15% 0.00% 93.85% 0.00%

66.24% 0.75% 32.67% 0.33%

46.09% 0.15% 53.56% 0.21%

66.35% 0.60% 32.76% 0.29%

46.11% 0.12% 53.59% 0.18%

94.85% 1.91% 2.66% 0.58%

92.96% 0.58% 5.87% 0.59%

94.91% 1.85% 2.67% 0.57%

92.99% 0.55% 5.87% 0.58%

Correctly
Segmented

Over-
segmented

Under-
segmented

Mixed
Errors

Syllable
Unigram

Syllable
Bigram

Syllable
Trigram

50.70% 3.83% 41.50% 3.97%

27.58% 0.49% 70.29% 1.65%

97.57% 0.81% 1.41% 0.21%

95.97% 0.29% 3.54% 0.20%

97.71% 0.50% 1.66% 0.13%

95.14% 0.18% 4.56% 0.12%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 P. Unigram P. Unigram + RS P. Bigram P. Bigram + RS P. Trigram P. Trigram + RS

Correctly Segmented Over-segmented Under-segmented Mixed Errors

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Syll. Unigram Syll. Bigram Syll. Trigram

Correctly Segmented Over-segmented Under-segmented Mixed Errors

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Figure 3.7: Found word and true word errors for phoneme models on modified Bernstein-Ratner
corpus. “Correct” for found words is precision, and “correct” for true words is recall.

Correctly
Segmented

Over-
segmented

Under-
segmented

Mixed
Errors

Phoneme
Unigram

Phoneme
Unigram +
RS

Phoneme
Bigram

Phoneme
Bigram +
RS

Phoneme
Trigram

Phoneme
Trigram +
RS

20.98% 0.00% 79.02% 0.00%

6.15% 0.00% 93.85% 0.00%

20.98% 0.00% 79.02% 0.00%

6.15% 0.00% 93.85% 0.00%

58.75% 0.31% 40.70% 0.24%

36.44% 0.04% 63.39% 0.13%

58.76% 0.30% 40.71% 0.23%

36.44% 0.04% 63.40% 0.12%

94.85% 1.91% 2.66% 0.58%

92.96% 0.58% 5.87% 0.59%

94.91% 1.85% 2.67% 0.57%

92.99% 0.55% 5.87% 0.58%

Correctly
Segmented

Over-
segmented

Under-
segmented

Mixed
Errors

Syllable
Unigram

Syllable
Bigram

Syllable
Trigram

50.70% 3.83% 41.50% 3.97%

27.58% 0.49% 70.29% 1.65%

97.57% 0.81% 1.41% 0.21%

95.97% 0.29% 3.54% 0.20%

97.71% 0.50% 1.66% 0.13%

95.14% 0.18% 4.56% 0.12%

Latest results are with initialCount set to 0.0001. Syllable bigram does abysmally if it
is set to 1.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 P. Unigram P. Unigram + RS P. Bigram P. Bigram + RS P. Trigram P. Trigram + RS

Correctly Segmented Over-segmented Under-segmented Mixed Errors

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Syll. Unigram Syll. Bigram Syll. Trigram

Correctly Segmented Over-segmented Under-segmented Mixed Errors

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Figure 3.8: Found word and true word errors for syllable models on modified Bernstein-Ratner
corpus. “Correct” for found words is precision, and “correct” for true words is recall.

32

Correctly
Segmented

Over-
segmented

Under-
segmented

Mixed
Errors

Phoneme
Unigram

Phoneme
Unigram +
RS

Phoneme
Bigram

Phoneme
Bigram +
RS

Phoneme
Trigram

Phoneme
Trigram +
RS

31.50% 0.00% 68.50% 0.00%

12.78% 0.00% 87.22% 0.00%

31.50% 0.00% 68.50% 0.00%

12.78% 0.00% 87.22% 0.00%

40.59% 2.07% 55.45% 1.89%

19.64% 0.18% 79.41% 0.77%

40.54% 1.83% 55.76% 1.87%

19.55% 0.16% 79.55% 0.74%

59.90% 6.25% 30.37% 3.48%

42.22% 1.22% 54.43% 2.13%

59.94% 5.89% 30.67% 3.49%

42.06% 1.14% 54.69% 2.11%

Correctly
Segmented

Over-
segmented

Under-
segmented

Mixed
Errors

Syllable
Unigram

Syllable
Bigram

Syllable
Trigram

35.33% 13.53% 39.53% 11.60%

20.46% 1.70% 72.34% 5.50%

67.38% 25.43% 4.50% 2.69%

73.29% 10.71% 12.95% 3.04%

77.24% 18.75% 2.59% 1.42%

83.02% 7.78% 7.55% 1.65%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Syll. Unigram Syll. Bigram Syll. Trigram

Correctly Segmented Over-segmented Under-segmented Mixed Errors

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 P. Unigram P. Unigram + RS P. Bigram P. Bigram + RS P. Trigram P. Trigram + RS

Correctly Segmented Over-segmented Under-segmented Mixed Errors

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Figure 3.9: Found word and true word errors for phoneme models on Sesotho corpus. “Correct”
for found words is precision, and “correct” for true words is recall.

Correctly
Segmented

Over-
segmented

Under-
segmented

Mixed
Errors

Phoneme
Unigram

Phoneme
Unigram +
RS

Phoneme
Bigram

Phoneme
Bigram +
RS

Phoneme
Trigram

Phoneme
Trigram +
RS

31.50% 0.00% 68.50% 0.00%

12.78% 0.00% 87.22% 0.00%

31.50% 0.00% 68.50% 0.00%

12.78% 0.00% 87.22% 0.00%

40.27% 1.80% 56.11% 1.81%

19.27% 0.15% 79.85% 0.73%

40.17% 1.78% 56.27% 1.79%

19.20% 0.15% 79.94% 0.72%

59.90% 6.25% 30.37% 3.48%

42.22% 1.22% 54.43% 2.13%

59.94% 5.89% 30.67% 3.49%

42.06% 1.14% 54.69% 2.11%

Correctly
Segmented

Over-
segmented

Under-
segmented

Mixed
Errors

Syllable
Unigram

Syllable
Bigram

Syllable
Trigram

35.33% 13.53% 39.53% 11.60%

20.46% 1.70% 72.34% 5.50%

67.38% 25.43% 4.50% 2.69%

73.29% 10.71% 12.95% 3.04%

77.24% 18.75% 2.59% 1.42%

83.02% 7.78% 7.55% 1.65%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 P. Unigram P. Unigram + RS P. Bigram P. Bigram + RS P. Trigram P. Trigram + RS

Correctly Segmented Over-segmented Under-segmented Mixed Errors

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Syll. Unigram Syll. Bigram Syll. Trigram

Correctly Segmented Over-segmented Under-segmented Mixed Errors

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Tr
ue

 W
or

d
s

Fo
un

d
 W

or
d

s

Figure 3.10: Found word and true word errors for syllable models on Sesotho corpus. “Correct” for
found words is precision, and “correct” for true words is recall.

33

at the boundaries will not be selected. The bigram model comes close to this, but it can only
learn what individual sounds start and end words, as the word boundary symbol is treated as a
phoneme. The phoneme unigram model contributes nothing to the segmentation process when
used without a lexicon; no word boundaries were inserted into the corpus whatsoever. When ex-
amining the errors the phoneme models make, we see that the unigram and bigram models almost
exclusively under-segment, while the trigram model over-segments only slightly less than it under-
segments. Furthermore, Figures 3.9 and 3.10, show that the performance of all the segmenters
suffers greatly when moving to the Sesotho corpus (Demuth, 1992; Johnson, 2008a). The reasons
for these performance differences are discussed in the next section.

Analysis

With the phoneme unigram model, longer novel words are preferred to shorter ones. This is
because the unigram scores are multiplied together to yield the segmentation score, and adding
a word boundary to a segmentation makes it one “phoneme” longer (e.g., [#w2ts#Dæt#] is one
phoneme longer than [#w2tsDæt#]). Consequently, any segmentations with word boundaries have
lower scores than those without them, and the segmenter does not insert a single boundary into
the corpus.

The large number of under-segmentation errors the phoneme bigram model makes are a con-
sequence of the bigram model only inserting boundaries between pairs of phonemes that do not
occur in the training input. This happens because, much like with the unigram model, adding an
extra word boundary makes a segmentation contain an extra bigram, and as the bigram scores
are multiplied together to yield the segmentation score, the total segmentation score for the longer
segmentation will usually be lower. For example, two possible segmentations for “hi mommy”
[haImami] are [#haImami#] and [#haI#mami#]. As word scores and bigram scores are both
multiplicatively combined, the score for each segmentation is simply the product of the bigram
probabilities in the segmentation. Therefore, if we cross-out all common terms in the segmentation
scores for [#haImami#] and [#haI#mami#], we see that the only terms that remain are P (m|I)
for [#haImami#] and P (#|I) × P (m|#) for [#haI#mami#]. Unless P (#|I) × P (m|#) is greater
than P (m|I), [#haImami#] will be the highest ranking segmentation, and with the BR corpus
P (m|I) is the higher probability. The bigram segmenter only over-segments in cases where there
is a multi-syllabic word that contains extremely rare phoneme combinations that occur at syllable
boundaries. For example, “bedspread” [#bEdsprEd#] is the only word in the corpus that contains
sequence [ds], and [d] and [s] are both frequently seen at word boundaries, so the segmenter over-
segments “bedspread” [#bEdsprEd#] as “bed spread” [#bEd#sprEd#]. As this is a rare problem,
all but a few of the errors the phoneme bigram segmenter makes are under-segmentations.

Much like the phoneme bigram model, the phoneme trigram model only inserts boundaries to
eliminate trigrams that did not occur in the training data; however, the phoneme trigram model is
much more successful segmenting the corpora. This is because most of the trigrams in the training
data exclusively occur within words, whereas more of the bigrams occurred both within and between
words. For instance, “hi mommy” [haImami] is correctly segmented in the phoneme trigram case
because [Ima] never occurred in the training data, but was incorrectly segmented in the bigram
case because [Im] did occur. The trigram model makes both over- and under-segmentation errors,
but both only occur in cases of rare phoneme sequences. On the over-segmentation side, “muffin”

34

[#m2fIn#] is incorrectly broken up into [#m2f#In#] because the trigram [2fI] never occurred in the
training data. The opposite type of rarity causes under-segmentations like “I don’t” [#aI#dont#]
as [#aIdont#]. In this case, a very rare trigram, [Ido] occurred once in the training data, but
that prevents the boundary from being inserted as the segmentation with more trigrams will score
lower due to the multiplicative way the word scores are combined. In summary, the phoneme
unigram and bigram models greatly under-segment the corpus because segmentations with more
word boundaries contain more phonemes, whereas the trigram model only errs when it encounters
relatively rare phoneme combinations that are well-formed in English.

It is interesting to note that the “require syllabic” feature did not improve the performance of the
phoneme n-gram segmenters examined in this experiment, but there is a simple explanation for this
result. The phoneme unigram and bigram models exclusively under-segmented the corpus, which
is not something the “require syllabic” feature can fix, as it only prevents the over-segmentation
of consonants. The phoneme trigram case is the only one where any significant amount of over-
segmenting occurred, but none of these were words that did not contain any syllabic sounds. This
is most likely because the segmenter did not have a lexical component, and it is word spotting that
often leads to the over-segmentation of non-syllabic affixes such as [s] and [z] in English.

As shown in Figure 3.8, the syllable bigram and trigram models have roughly the same word F1

on the modified BR corpus, and both have over twice the word F1 of the unigram model. This
is because the syllable unigram model suffers from the same problem as the phoneme unigram
model: it cannot learn which sound combinations at word boundaries are well-formed. However,
unlike the phoneme unigram model, it still inserts some word boundaries because it ranks words
made up of more frequent syllables higher than those with less frequent ones. For example, if the
segmenter encounters the words “let’s eat” [lEts it], that segmentation will be preferred over “let
seat” [lEt sit], because “eat” [it] is a more common syllable than “seat” [sit]. The syllable bigrams
and trigrams can learn what syllables are appropriate at word boundaries, and perform roughly
the same, and both mainly under-segment, but for very different reasons than their phoneme
counterparts. Although the syllable bigram and trigram models have the same problem as the
phoneme models in that adding a word boundary to a segmentation makes it have an extra n-gram
in it, this does not manifest itself in any significant way. As most of the words in BR corpus (84%)
are monosyllabic, most syllable n-gram never occur in the training data, so segmentations which
contain even infrequent n-grams (e.g., “#strings” [#.stôINz]) that have been seen will be preferred
over those with unseen bigrams (e.g., “those.strings” [Doz.stôINz]). There are only two cases in which
the syllable bigram and trigram models will under-segment: (1) when a syllable n-gram occurs in
the training data and is then seen in the test set as two (or three, for trigrams) separate words
(e.g., “along” [#.@.lON.#] occurs in the training data, but then the phrase “a long” [#.@.#.lON.#]
is encountered at test), and (2) when a word has never been encountered in the training data. For
example, if “strings” [#.stôINz.#] did not occur in the training data, then the bigrams [#.stôINz]
and [stôINz.#] (or the trigram [#.stôINz.#]) will not have either, so any segmentation that gloms
[stôINz] onto another word (e.g., “those.strings” [#.Doz.stôINz.#]) will be preferred over one with
[stôINz] by itself, because it will consist of fewer n-grams. The only over-segmentations the syllable
n-gram models make are when they encounter words with unseen n-grams that contain n-grams
which start and end words. One such case is “answer” [#.æn.sô

"
.#] getting over-segmented as “an

swer” [#.æn.#.sô
"
.#] because [æn] frequently occurs as its own word and [sô

"
] starts words (e.g.,

“circles” [#.sô
"
.kl

"
z#]). In summary, the syllable bigram and trigram models perform about the

35

same and mostly under-segment.
As shown in Figures 3.9 and 3.10, the performance of all the segmenters suffers greatly when

moving to the Sesotho corpus (Demuth, 1992; Johnson, 2008a). In particular, the top-performing
segmenters have many more over-segmentation errors than with the Bernstein-Ratner corpus, which
is largely due to the prevalence of words consisting solely of vowels in the Sesotho corpus. For
example, [e] is the second most frequent word in the corpus, and it is short enough that the
phoneme trigram model stores the entire word including word boundaries, which leads to over-
segmentation problems. The syllable model suffers from the same sort of problem, as it learns that
[e] is very good to both begin and end words. While the syllable trigram model also frequently
over-segments [e], overall it segments more accurately than the other because it can learn more of
the long syllable patterns present in Sesotho. Sesotho is an agglutinative language, which means
that words in it may be very long (e.g., there are 919 five-syllable word tokens in the corpus and
1 ten-syllable word). These makes encountering single-vowel words like [e] in the training data
especially problematic in Sesotho, because there are even more syllables to opportunities to over-
segment these long words. Furthermore, because Sesotho is agglutinative, the corpus has nearly
three times as many word types as the BR corpus (3870 versus 1321), so the syllable or phoneme n-
gram models are much less likely to have learned all of the relevant patterns in the training data.12

This in turn leads to the vowels being extracted from long words consisting of unfamiliar syllable
and phoneme n-grams. Overall, it does not seem like any of the sub-word features examined here
are individually sufficient for successfully segmenting Sesotho; although, the syllable trigram model
comes closest with a word F1 of close to 80%.

This experiment examined how the sub-word features discussed previously perform in ideal sce-
narios where they have plenty of training data. I have shown that both phoneme and syllable
unigram models are very uninformative for inserting word boundaries even with large amounts of
training data, because adding a word boundary to a segmentation greatly penalizes the unigram
score for that segmentation. This lengthening problem is also present in the phoneme bigram and
trigram models, but to a lesser degree, as boundaries are still inserted between pairs or triples of
phonemes that did not occur in the training data, and many of the n-grams that would occur if
two words were under-segmented do not occur in the training data. In general, the syllable n-gram
models outperform the phoneme models, partly because potential words need to contain syllable
n-gram that occurred in the training data, and under-segmentation often leads to incorrect syl-
labification (e.g., “what’s that” [#w2ts#Dæt#] would be syllabified as [#.w2t.sDæt.#] if it were
under-segmented). Taking both word F1 and the types of errors each model makes into account,
the phoneme and syllable trigram models performed the best on both corpora.

3.2.5 Experiment 2: How Much Training Is Necessary?

To get an idea of how much training data is necessary for the sub-word features to be useful, we
conduct another experiment with the following departures from the previous. First, the segmenters
are trained on progressively smaller portions of the corpora. That is, instead of training on nine
subsets and testing on one, the number of training subsets varies from nine to one, while the test set

12It is worth investigating whether these problems can be overcome with more training data, as the Johnson (2008a)
version of the (Demuth, 1992) Sesotho corpus we use is only a subset of the entire corpus. Johnson wanted the
corpus to be roughly the same length as the BR corpus.

36

consists of the remainder.13 The models are also run once without any training data in a completely
unsupervised fashion. Second, as we are measuring the way performance changes over many trials,
in Figures 3.11 and 3.12 we only report word F1 scores in the graphs for this experiment. Third,
we only look at the phoneme n-gram segmenters when they also have the “require syllabic” feature.
This is not only to make the graphs easier to follow, but also because the “require syllabic” feature
makes little difference in F1—except when the segmenters have a lexicon (see Blanchard et al.
(2010)), which they do not in these experiments. Finally, for consistency with the unsupervised
trial, the n-gram models are allowed to update their counts during testing (i.e., if an n-gram is
encountered during test, its count is incremented once per occurrence). With the exception of the
aforementioned changes, the setup for this experiment is identical to that of Experiment 1: the
probabilities for the syllable and phoneme n-grams are still calculated as described in Section 3.2.1,
the lexicon is disabled, and the models are run on the BR and Sesotho corpora.

Results

As can be seen in Figure 3.11, all of the models have relatively stable performance on the modified
BR corpus for the semi-supervised trials; however, when the models are run completely unsu-
pervised, there is a large drop in word F1 score for all but the phoneme and syllable unigram
segmenters.

The results of running the segmenters with progressively smaller amounts of training data on
the Sesotho corpus are shown in Figure 3.12. The rates of the performance drops on Sesotho seem
very similar to those of the ones on the BR corpus, with the exception of the syllable bigram and
trigram segmenters.

Analysis

As can be seen in Figure 3.11, all of the models have relatively stable performance on the modified
BR corpus for the semi-supervised trials; however, when the models are run completely unsu-
pervised, there is a large drop in word F1 score for all but the phoneme and syllable unigram
segmenters. The phoneme unigram model has exactly the same performance as in the supervised
trials because it never inserts any word boundaries, so it cannot get any worse. On the other
hand, the syllable unigram model only sees a modest drop in F1 score because, as was described in
the previous experiment’s results, it only inserts boundaries to make words out of syllables it has
already seen, and it can still acquire syllables from unsegmented utterances, albeit less accurately.
The results for the other models are not quite as straightforward, and are discussed below.

The syllable bigram and trigram models see the largest drop in word F1 for two reasons. First,
as they have no reason to insert boundaries early on, they learn that illegal word-internal syllable
n-grams (e.g., “put.that” [pUt.Dæt]) are actually good, and these initial mistakes compound on
each other. Second, the syllabification algorithm does not work well on unsegmented corpora—it
is meant for use on words, not utterances—and once the models have started to learn incorrect
syllables that can start and end words, the errors compound on one another.

13In this approach models are being tested on progressively larger sets. In the future we may rerun this experiment
with the segmenters trained on the first k sets, then run unsupervised with count updating enabled on all but the
final set, and finally tested on the final set. Thus, the test sets would all be the same size while still allowing each
model to get extra unsupervised training.

37

Model 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Phoneme Unigram + RS

Phoneme Bigram + RS

Phoneme Trigram + RS

Syllable Unigram

Syllable Bigram

Syllable Trigram

9.51% 9.51% 9.51% 9.51% 9.51% 9.51% 9.51% 9.51% 9.51% 9.51%
54.60% 54.88% 55.32% 55.92% 56.43% 56.90% 57.72% 58.54% 60.18% 35.95%
94.00% 94.04% 94.11% 94.22% 94.20% 94.04% 93.71% 93.18% 91.91% 59.92%
35.76% 35.71% 35.61% 35.53% 35.44% 35.32% 35.10% 34.83% 34.25% 28.54%
97.00% 96.67% 96.30% 95.92% 95.51% 94.83% 93.68% 91.97% 88.42% 47.63%
96.75% 96.39% 96.01% 95.63% 95.18% 94.48% 93.28% 91.45% 87.59% 44.89%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

W
o

rd
 F

1

Training Percentage

Phoneme Unigram + RS Phoneme Bigram + RS Phoneme Trigram + RS
Syllable Unigram Syllable Bigram Syllable Trigram

Figure 3.11: Word F1 for segmenters on modified BR corpus.

Model 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Phoneme Unigram + RS

Phoneme Bigram + RS

Phoneme Trigram + RS

Syllable Unigram

Syllable Bigram

Syllable Trigram

18.18% 18.03% 17.98% 17.95% 17.93% 17.92% 17.92% 17.91% 17.91% 17.87%
26.43% 26.32% 26.88% 27.04% 26.57% 27.26% 27.26% 26.97% 29.61% 24.07%
48.92% 48.21% 48.02% 48.00% 47.84% 48.18% 47.65% 47.17% 46.17% 25.30%
25.92% 25.72% 25.55% 25.43% 25.24% 24.92% 24.60% 24.07% 23.15% 12.49%
70.16% 69.38% 68.62% 67.53% 66.54% 65.04% 63.05% 59.99% 54.86% 28.18%
79.99% 78.78% 77.40% 76.05% 74.49% 72.42% 69.46% 65.93% 60.22% 38.56%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

W
o

rd
 F

1

Training Percentage

Phoneme Unigram + RS Phoneme Bigram + RS Phoneme Trigram + RS
Syllable Unigram Syllable Bigram Syllable Trigram

Figure 3.12: Word F1 for segmenters on Sesotho corpus.

38

The way the syllable n-gram models are initialized becomes important for the unsupervised trial.
As we cannot enumerate all logically possible syllables of a given language—there are an infinite
number of them—the method we chose to create a uniform distribution over the syllable n-grams
was to first find all of the syllables in the segmented corpus—there are 1178 in the BR corpus—and
then calculate what the total number of n-grams at each level should be assuming all logically
possible n-grams of the length we are concerned with are given a small constant count (0.0001).
We could not directly enumerate all of the possible syllable n-grams as there are 1.6 billion possible
trigrams consisting of the 1178 syllables in the BR corpus. Instead, any time the segmenter finds a
word that consists of a syllable n-gram it has never seen before, the n-gram is assigned a probability
equal to the small constant count for that length n-gram divided by the count of its n − 1 length
prefix, which may also be a larger constant number if the prefix has not been seen before. For
example, if the first trigram encountered is “#cat#” [#.kat.#], it will be given a probability of
roughly 0.0001

0.2348 . The problem lies in the fact that the model may also examine a segmentation that
contains a bad syllable (i.e., one that did not occur in the segmented corpus), and that too will be
given the same probability as a good unseen syllable. Hence, the number of syllables encountered
will be greater than the number used to initialize this counts, which means the initial uniform
distribution is not probabilistically sound, as it does not necessarily add up to one. However, the
current method for initialization was the most reasonable approach at the time of the experiment.

In the semi-supervised trials, the phoneme bigram segmenter actually sees a slight improvement
in word F1 the less training data it is given. This is a counterintuitive result, but the cause is
rather straightforward. Some phoneme bigrams in the corpus occur very rarely within words, but
frequently across word boundaries, and as the segmenter only inserts boundaries between unseen
bigrams, when these rare sequences are encountered in a word in the training data, the segmenter
is prevented from inserting boundaries between the bigram later. For example, the sequence [@p]
only occurs in the BR corpus in the words “apart” [@part] and “supposed” [s@pozd], but it occurs
146 times across word boundaries (e.g., “the pants” [D@#pænts]), so when there is more training
data, the segmenter is more likely to have encountered “apart” or “supposed.” Thus, less training
data is actually helpful for the phoneme bigram model for corpora that do not have a strict bimodal
distribution of bigrams where all bigrams occur either within or across word boundaries.

As shown in Figure 3.11, all of the models except the phoneme unigram model (whose perfor-
mance cannot get worse) see substantial drops in performance in the unsupervised trial. This is
because the initial probability estimates the models make are unreliable. Since all n-grams (includ-
ing unseen ones) are given an initial small constant count (0.0001) to ensure the models are proba-
bilistically sound, any n-gram that has been seen even once is given a disproportionately high score
in the beginning. If these initial n-grams are actually mistakes, then these early errors will beget
many more later errors. For example, the first utterance that has a boundary inserted into by the
phoneme bigram and trigram models is “You want to look at this?” [ju#want#tu#l2k#æt#DIs#],
which is broken up as [juwanttul2k#ætDIs#]. It is broken up this way because the first utterance
in the corpus is “You want to see the book?” [ju#want#tu#l2k#æt#D@#b2k#], so all of the n-
grams that make up “Youwantto” [juwanttu] have high probabilities, and so do those that make up
word-final “ook” [2k#]. While this may seem like a good thing, this is only the fourth utterance in
the corpus, thus the segmenters are overconfident in the evidence they have gathered over just a few
utterances. Considering that most of the utterances are completely unsegmented initially because
a majority of the n-grams are unseen, the segmenters incorrectly learn that phoneme combinations

39

that only occur across word boundaries are valid. For instance, “You want to” [ju#want#tu] is
under-segmented throughout the entire corpus. One of the only reasons this does not quickly spiral
out of control leading to the segmenters under-segmenting nearly every utterance is that infant-
directed speech contains a relatively high frequency of one-word utterances (21% of the utterances
in the BR corpus). This aids the segmenters in learning which phoneme sequences are acceptable
at word boundaries without learning too many invalid sequences (as they would if there were only
multi-word utterances in the corpus). Nevertheless, the segmenters do learn a variety of incorrect
sequences initially (e.g., [tt] from under-segmenting “You want to” [ju#want#tu] as [juwanttu])
which adversely affects their performance throughout the rest of the corpus, causing the large drop
in performance from the semi-supervised trials.

The results of running the segmenters with progressively smaller amounts of training data on
the Sesotho corpus are shown in Figure 3.12. The rates of the performance drops on Sesotho seem
very similar to those of the ones on the BR corpus, with the exception of the syllable bigram and
trigram segmenters. Their F1 plummets compared to the other models, and this is again due to the
prevalence of single-vowel words such as [e] in Sesotho combined with the syllable trigrams ability
to act as a lexicon for monosyllabic words. The less training data the models have, the more of an
impact this problem makes, because they will know fewer correct syllable trigrams, but still learn
[e] is a very likely word.

In this experiment we have demonstrated what the effects of reducing the amount of training
data for the previously examined segmenters are. In general, there were relatively drops in word
F1 when moving from 90% to 10% training data were relatively small, with the exception of the
syllable bigram and trigram models on the Sesotho corpus. Their F1 declined steadily with each
reduction in training data as a result of increasing over-segmentation of single-vowel words like
[#e#]; when there are fewer training examples with syllable trigrams containing [e], more words
containing [e] are over-segmented. The phoneme bigram model on the BR corpus anomalously saw
an increase in performance as the training data was reduced, but this was due to the BR corpus
having some phoneme pairs that occur rarely within words but frequently between words. As for
the unsupervised trial’s results, performance dropped substantially on both corpora for all but the
phoneme unigram model, and this exception was simply due to the phoneme unigram model not
inserting any boundaries even with training data. On the Sesotho corpus, none of the models got
higher than 38% word F1 during the unsupervised trial, hence none of them can be considered
adequate for segmenting sesotho. Conversely, the phoneme trigram model on the BR corpus had a
moderately high word F1 (60%) during the unsupervised trial, which is impressive since trigram
models usually suffer from data sparsity issues when given such little training data. In summary,
only the phoneme trigram model maintained a word F1 scores of at least 60% in the unsupervised
trial on the BR corpus, whereas none of the models exceeded 38% F1 on the Sesotho corpus.

3.2.6 Overall Results

As is shown in Table 3.2.6, it seems that out of the features I have examined so far, a phoneme
trigram model with the “require syllabic” constraint has the best combination of overall performance
(see Experiment 1) and resilience to less training data (see Experiment 2).14 The syllable bigram

14Our results do not completely line up with the results of Blanchard et al. (2010) (where the phoneme unigram and
bigram models were not far behind the trigram model), but this is simply because in our current experiments

40

Sub-word Feature Advantages Disadvantages

Phoneme Unigram No over-segmentation errors. Inserts no word boundaries in ei-
ther experiment.

Phoneme Bigram Very few over-segmentation errors. Word F1 drops to 37% in unsuper-
vised trial.
55% word F1 score in supervised
experiment.

Phoneme Trigram 94% word F1 scores in supervised
experiment.

Makes some over-segmentation er-
rors.

60% word F1 in unsupervised trial.

“Require Syllabic”
Constraint

Prevents consonant over-
segmentation.

A priori knowledge of language
structure.

Syllable Unigram Very few over-segmentation errors. Inserts very few word boundaries
in either experiment.

Syllable Bigram 97% word F1 when supervised. Word F1 drops to 48% in unsuper-
vised trial.

Very few over-segmentation errors.

Syllable Trigram 96% word F1 score in supervised
experiment.

Word F1 drops to 45% in unsuper-
vised trial.

Very few over-segmentation errors.

Table 3.2: Advantages and Disadvantages of Each Feature Examined

and trigram models perform slightly better in the supervised experiment, but have a 12% lower F1

than the phoneme model in the unsupervised trial. All of the bigram and trigram models are very
sensitive to early errors as they are overconfident in their early decisions.

3.A Results with Lexicon Enabled

As shown in Figure 3.13, when the models are run unsupervised on the BR corpus with the lexicon
enabled, the F1 is greatly influenced by the value chosen to smooth the unseen n-grams. When
using 0.0001, as we did in Experiments 1 & 2, the performance for each model seems to decrease
as the value for n is increased. This runs counter to the previous experiments, so I also ran it with
the initial count set to 1, which allocates much more of the probability space to unseen n-grams.
In this case, instead of seeing a drop in performance for larger window sizes, we see relatively
stable performance from all phoneme and syllable n-gram models. These results underscore the
importance of looking at these features in isolation in Experiments 1 & 2, as the fundamental
advantages and disadvantages of the different features are completely distorted when using the
lexicon. Figure 3.13 actually has the rankings of models almost completely reversed from those in
Experiments 1 & 2 where the bigram and trigram models definitively outperformed the unigram
models. This is because currently the models only utilize the sub-word feature scores when no
lexical score is available for a word (i.e., the word is novel). These results really only show how

there was no lexicon, unlike in their experiments.

41

Model No Training 10%
Training

Phon. Unigram

Phon. Bigram

Phon. Trigram

Syll. Unigram

Syll. Bigram

Syll. Trigram

9.51% 9.51%
35.95% 60.18%
59.92% 91.91%
28.54% 34.25%
47.63% 88.42%
44.89% 87.59%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Phon. Unigram Phon. Bigram Phon. Trigram Syll. Unigram Syll. Bigram Syll. Trigram

W
o

rd
 F

1

No Training 10% Training

Model initialCount
= 0.0001

initialCount
= 1

Phon. Unigram

Phon. Bigram

Phon. Trigram

Syll. Unigram

Syll. Bigram

Syll. Trigram

77.21% 77.21%
72.96% 75.35%
67.18% 75.88%
58.90% 61.84%
47.98% 63.13%
46.95% 64.06%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Phon. Unigram Phon. Bigram Phon. Trigram Syll. Unigram Syll. Bigram Syll. Trigram

W
o

rd
 F

1
Initial n-gram count = 0.0001 Initial n-gram count = 1

Unsupervised Incremental Segmentation
Daniel Blanchard

Advisors: Jeffrey Heinz (Linguistics) & Vijay Shanker (Computer & Information Sciences)

Task of Unsupervised Segmentation

‣General framework for word segmentation.

‣Potential words scored on phonotactic cues (i.e., sound-based sub-word features).

‣Phoneme (vowel/consonant) n-grams: “slem” possible English word, not “srem.”

‣Syllable n-grams: “do you” = separate words, “okay” = one word

‣Process is incremental:

‣Segmenter evaluates one utterance at a time.

‣Updates statistics when it finds the best segmentation for current utterance.

‣Many existing segmenters can be described in framework (e.g., [1], [2], and [3]).

‣For more detailed description of model see [4].

PHOnotactic CUe Segmenter (PHOCUS)

WAtduyuwant WAt du yu want
Infants must learn to do this without an initial dictionary!

Unsupervised with Learned Lexicon

Contributions
‣Framework that unifies seemingly disparate segmentation algorithms.

‣Systematic investigation of which sub-word features are most useful for
segmentation.

‣Highly accurate unsupervised incremental segmenter.

‣Future work: How to prevent and recover from early errors.

[1] Brent, M. R. (1999). An efficient, probabilistically sound algorithm for segmentation and word discovery. Machine Learning, 34, 71–105.
[2] Batchelder, E. O. (2002) Bootstrapping the lexicon: a computational model of infant speech segmentation. Cognition, 83, 167–206
[3] Venkataraman, A. (2001). A statistical model for word discovery in transcribed speech. Computational Linguistics, 27, 352–372.
[4] Blanchard, D., J. Heinz, and R. Golinkoff (2010). Modeling the contribution of phonotactic cues to the problem of word segmentation. Journal of
Child Language vol. 37 (3) pp. 487-511.

No Lexicon

Central Hypothesis
Phonotactic cues can be used to solve problem.

Conclusions

‣ “Learned Lexicon” approach is traditional approach (e.g., [1] and [3]).

‣ If word has been seen before, score it based on frequency in corpus so far.

‣Otherwise, score it based on phonotactic cues.

‣Why do phonotactic cues underperform in unsupervised with learned lexicon?

‣Back-off from words to phonotactic cues.

‣Model is too confident in initial guesses.

‣These early errors are problematic.

‣Best models without lexicon greatly outperform best with learned lexicon.

‣Small amount of training data prevents more early errors than lexicon.

Figure 3.13: Word F1 for segmenters on modified BR corpus.

well the lexical feature does on its own, since a lexical score is almost always available after the
first few hundred utterances because the BR corpus consists of 21% one-word utterances. In my
dissertation, I will develop a more principled method for combining the sub-word and lexical scores,
which should alleviate some of these issues.

42

4 Moving Forward

In this chapter I enumerate the problems that I will attempt to solve in my dissertation, discuss some
potential solutions to them, and explain how addressing these issues will make the contributions
to the field outlined in Section 1.1.

4.1 Fundamental Issues

There are two fundamental issues with the current PHOCUS models that I will address in my
dissertation: (1) how to handle early errors and (2) how to combine feature scores. Each issue is
presented in detail below along with potential solutions.

4.1.1 Handling Early Errors

As exemplified by the errors discussed in Section 3.2, an inherent issue with taking an incremental
approach to word segmentation is that any errors that a segmenter makes initially quickly compound
on one another. While these compounding errors are present to some extent when the segmenters
are run in a supervised fashion, when the segmenters are not given any training data these errors can
have an extremely detrimental effect on segmentation accuracy when (see Section 3.2.5). Therefore,
examining how to eliminate or recover from early errors will be a major part of my dissertation
research.

I have a few ideas for addressing the question of how to prevent early errors in an incremental
segmenter. First, if we cannot prevent the errors, it seems reasonable to try to make the model
more resilient to these errors. One way to do that would be to add some sort of decay factor to
the counts stored by the model, so that n-grams seen frequently earlier in the corpus but very
infrequently later have their scores decremented. This would allow the model to effectively remove
the invalid n-grams (e.g., [tj]) that are seen early on because of the drastic under-segmentation
most of the models due in the beginning of the learning process.

Second, we could try to add a feature that is more reliable initially and use that feature exclusively
until the model is confident that the statistics the other features use have stabilized. For example,
the incremental version of the Bootstrap Voting Experts algorithm (Hewlett and Cohen, 2009)
mentioned in Section 2.4 uses conditional entropy to determine where to insert boundaries, and
Hewlett and Cohen (2009) show that this approach segments fairly accurately even in the very
beginning of the process. A strategy such as theirs could be used initially to find some words, and
then update the evidence for the other sub-word features on the basis of those words.

The final approach to handling early errors in an incremental segmenter I propose is to modify
the Top Candidate Selector (see Figure 3.2) and the Evidence Updater (see Figure 3.1) to return
and store the n best segmentations (instead of just the top one) where alternative segmentations
are stored with lower weights based on their scores. This would be especially useful in the early

43

stages of learning, because these alternative segmentations would make the model less likely to
lock in to one particular way of segmenting things, thereby making the model less over-confident
initially.

4.1.2 Combining Feature Scores

In my dissertation, I will conduct experiments similar to those in Section 3.2 that include additional
sub-word features. One problem that arises from adding more features to the model is that it is not
clear how these usually disparate probabilities should be combined. The current instantiation of
the PHOCUS Word Score Combiner in the models evaluated in Section 3.2 simply uses the lexical
score if it is non-zero and that component is enabled, and uses the phoneme or syllable n-gram
score otherwise, but when we want to evaluate combinations of sub-word features this method will
not suffice.

There are many issues to consider when choosing an appropriate method for combining the sub-
word feature scores. For example, if the range or variance of the score distributions are different,
then the Word Score Combiner would have to ensure that the differences in the distributions
do not cause some feature scores to inherently have more of an impact on the final score than
others. Furthermore, if we want the final score to be a probability, then the most common methods
for combining multiple feature scores (e.g., taking a weighted sum of the scores) would not be
appropriate. Determining how exactly to combine these feature scores will require significant work
and will be an important part of the research for my dissertation.

4.2 Other Issues

In the course of my dissertation research, there are also some lesser problems that I will address.
These include verifying more PHOCUS instantiations, creating a phonological word corpus, and
correcting feature implementation issues.

4.2.1 PHOCUS Instantiations

I have established that the PHOCUS framework unifies the segmenters of Brent (1999), Batchelder
(2002), Venkataraman (2001), and Blanchard et al. (2010); however, there are other segmenters
(e.g., Hewlett and Cohen’s (2009) incremental implementation of Voting Experts (Cohen and
Adams, 2001; Cohen et al., 2007)) that should fit into the framework whose exact instantiations
have yet to be determined. In my dissertation I will examine which state-of-the-art segmenters can
be instantiated within the PHOCUS framework to allow for easier comparison between models. As
it is unclear how one could mathematically prove that the PHOCUS instantiations of these models
are correct, I will have to verify the accuracy of them by comparing the outputs from running
the PHOCUS and original versions of each segmenter on the same corpus. Those with identical
segmentation can be considered to be correctly instantiated. This will concretely establish that the
PHOCUS framework unifies many seemingly disparate models.

44

4.2.2 Phonological Word Corpus

To evaluate my hypothesis that many errors made by segmenters that are searching for phonological
words are simply due to them being evaluated against corpora of orthographic words, in the course
of my dissertation research I will create a version of the modified BR corpus that is split into
phonological words. The main change I will make is removing the breaks between unstressed
function words the words they proceed. I will not add any word boundaries to the corpus, as
English orthography typically does not have two phonological words without a space between
them.

4.2.3 Feature-Specific Issues

As was shown in Table 3.2.6, each sub-word feature we have examined has its shortcomings, and
we need to address them. Below we consider possible solutions to the issues facing the syllable and
phoneme n-gram features, and I propose a new feature for handling word length.

Syllable N-gram

The feature that seems to have the most glaring issue with its implementation is the syllable n-
gram one, as the counts are not initialized in a probabilistically sound manner. While one cannot
have a uniform distribution over an infinite set, there are alternative initialization methods that
may bring the model closer to being probabilistically sound (e.g., use the true syllable boundaries)
Regardless of the specific solution we use in the end, addressing the issue of syllable n-gram count
initialization will be important for being able to conclusively say that syllable n-grams work better
or worse than some other sub-word feature.

Phoneme N-gram

Although it is probabilistically sound, the phoneme n-gram feature is not without its problems as
well. One such issue was raised in Section 3.2.2: it would more directly measure a words well-
formedness if we calculated the likelihood of the phoneme n-grams occurring within words, instead
of calculating how likely one phoneme is given another.

Another shortcoming of the way our model currently approaches phoneme combinations is that
there is no feature that can support long-distance dependencies (e.g., vowel harmony in languages
like Finnish). Many of the worlds’ languages have vowel or consonantal harmony, and words in
these languages must obey these long-distance patterns to be well-formed. A straightforward way to
do this is to add a probabilistic strictly-piecewise learner as proposed by Heinz (2007) (essentially,
a bigram model that stores non-adjacent pairs in addition to adjacent ones).

Word Length

As both under-segmentations and over-segmentations are errors in which the lengths of the words
and utterances found do not match those present in the correct segmentation, one way to try to
prevent both of these types of errors would be to add or modify features to penalize words and
utterances of incorrect lengths. First, we would need to factor out the inherent length penalties
from the phoneme and syllable n-gram models from the multiplicative nature in which scores are

45

Length Count

1

2

3

4

28045

4851

490

14

0

12500

25000

37500

50000

1 2 3 4

y = 522044e-2.51x

R! = 0.9741

F
re

q
u
e
n
c
y

Token Length in Syllables

Figure 4.1: Word token length distribution for modified BR corpus.

currently combined: as more probabilities are multiplied together, the product gets smaller. One
way to factor out the length penalties present in these scores would be to use the geometric mean
of the probabilities—instead of just the product—by taking the nth root of the product (e.g., take
the square root of the product of two probabilities).

After removing the inherent length penalties, we should add a feature that scores a word based
on how likely it is to be a particular length so that one-word segmentations do not always have
the highest score. The score from this feature could then be combined with the other sub-word
feature scores by the Word Score Combiner (see Figure 3.5) to yield a score for each word in a
potential segmentation. For the BR corpus, the distribution of word token phoneme lengths is
not something that seems to be a necessary consequence of any other properties of the corpus
that we can find;1 however, the distribution of word token syllable lengths seems to be a nearly
exponentially decreasing function peaking at one (see Figure 4.1), which could be approximated
by simply multiplying the syllable unigram probabilities in each word together. Therefore, while
the syllable unigram feature was not very successful in isolation, it may be useful for scoring word
length in future models. With the constant inclusion of the currently implemented syllable unigram
feature, and the removal of the inherent length penalties from the phoneme and syllable n-gram
models, we can expect the length distribution of the segmented corpus to more closely match that
of the true corpus, which should prevent both major classes of errors.

1It peaks at three and drops slightly on either side, and then rapidly plummets.

46

4.3 Contributions

My dissertation will make five major contributions to the field: a unified framework for segmen-
tation, a thorough investigation of sub-word features, evidence that evaluating segmenters with
respect to orthographic words is incorrect, methods for preventing and recovering from early er-
rors, and a highly accurate unsupervised incremental word segmenter. Each of these contributions
and the progress I have made toward making them are discussed in more detail below.

4.3.1 PHOCUS Framework

The PHOCUS framework presented in Section 3.1 is a significant contribution for the following
reasons. First, as was shown in Section 2.4, there are many existing incremental and “repeated
incremental” batch segmentation models that all employ different features, which makes them
seem disparate; however, many can be described within the PHOCUS framework (see Section 3.1),
thereby allowing the systematic investigation of the effects of changing the instantiations of the
framework’s components, and simplifying the process of comparing competing segmentation mod-
els. Second, by unifying seemingly disparate segmentation algorithms, the framework makes the
similarities that many segmenters share more apparent. Finally, those interested in studying the
acquisition of phonotactic patterns may also be interested in the framework, because the models
in it can acquire phonotactic patterns from unsegmented text, instead of from words (as is the
norm). I have already established that the PHOCUS framework unifies the segmenters of Brent
(1999), Batchelder (2002), Venkataraman (2001), and Blanchard et al. (2010), and will verify more
instantiations of the framework as described in Section 4.2.1.

4.3.2 Investigation of Sub-word Features

The main contribution of my dissertation will be establishing in principle what sub-word features
are more useful than others, and the types of errors each prevents or causes. This will be partic-
ularly useful for anyone who is building an unsupervised word segmentation system, as they will
know which features they should use to address particular issues with a given corpus or model.
Furthermore, my work will also be the first to examine some sub-word features like long-distance
phonotactic patterns, which may turn out to be beneficial for segmenting languages that have vowel
harmony (e.g., Finnish). Finally, if syllable-based sub-word features (e.g., syllable n-grams) are es-
pecially useful, then my work could also be considered evidence for the necessity of the syllable, a
unit whose status is often debated by phonologists.

The experiments conducted in Section 3.2 were the first pieces of my thorough investigation of
sub-word features. The first experiment was conducted to get an idea of how the features work in an
ideal situation and used ten-fold cross validation, and the second tested the features in progressively
more realistic scenarios by training on smaller and smaller portions of the corpus before testing. In
my dissertation, I will conduct similar experiments that include the additional sub-word features
mentioned in the previous section: a strictly-piecewise learner, and word length evaluator. These
experiments will also evaluate the combined effectiveness of different features using one of the
implementations of the Word Score Combiner (see Figure 3.5) described in Section 4.1.2.

47

4.3.3 Phonological Word Evaluation

All corpora we are aware of that have been used for evaluating segmenters are divided into ortho-
graphic words, but my research calls these evaluations into question, which should have an impact
on the methodology others use to evaluate their segmenters. As mentioned previously, models that
make use of phonotactic features (e.g., Fleck, 2008; Blanchard et al., 2010; Daland, 2009) or innate
knowledge of syllable structure (e.g., Johnson, 2008b) are searching for phonological words; how-
ever, these models have only been evaluated against corpora that were segmented into orthographic
words, although they are phonetically transcribed ones. Therefore, my hypothesis is that many
of the errors in the segmentations these models output may not be errors, but rather a result of
comparing them against the wrong gold standard. For example, many of the under-segmentation
errors unsupervised models make contain function words that are not actually distinct phonological
words (e.g., “the” [D@]).

To alleviate the above problems, in the course of my dissertation research I will create a version
of the modified BR corpus that is split into phonological words. This corpus would be useful not
only to myself but also to other researchers who study unsupervised word segmentation, as the
word boundaries will no longer be arbitrarily based on the English writing system. When this new
corpus is developed, I will re-run the experiments I have already conducted to see if changing the
gold standard to be phonological words makes the predicted difference.

4.3.4 Early Error Recovery & Prevention

In Section 4.1.1 I outlined some of the approaches I will try in my dissertation to help prevent and
recover from early errors in the unsupervised learning process. The ideas that should be applicable
to other unsupervised learning scenarios are (1) adding decay to the counts of stored by the model
to decrement the scores of n-grams that only occur initially, and (2) using one feature that is more
reliable initially and then switching to using others once enough words have been learned. I will
investigate these methods in detail in my dissertation.

4.3.5 Accurate Incremental Segmenter

The final major contribution that my work will make is a highly accurate unsupervised incremental
word segmenter. The instantiation of my segmentation framework presented by Blanchard et al.
(2010) is currently the most accurate unsupervised incremental segmenter on the de facto standard
corpus for evaluation in the unsupervised segmentation community, the Bernstein-Ratner (1987)
corpus. Although this segmenter’s results are promising, there is still room for improvement, and
in my dissertation I will use the error prevention methods mentioned previously to develop more
accurate unsupervised incremental segmenters.

4.4 Conclusion

In this proposal I have outlined what the current state of unsupervised word segmentation research
is, and described how determining what features are most useful for the process would be beneficial
to many types of segmenters. I also examined the performance of a few sub-word features and
discussed the work that I will do for my dissertation to alleviate any problems inherent to those

48

features. Finally, I have outlined how I will make the contributions to the field proposed in the
first chapter.

49

Bibliography

Aslin, R, Jenny R Saffran, and Elissa Newport. 1998. Computation of conditional probability
statistics by 8-month-old infants. Psychological Science.

Batchelder, Eleanor Olds. 2002. Bootstrapping the lexicon: a computational model of infant speech
segmentation. Cognition, 83(2):167–206.

Bernstein-Ratner, Nan. 1987. The phonology of parent child speech, volume 6, pages 159–174.
Erlbaum, Hillsdale, NJ.

Blanchard, Daniel and Jeffrey Heinz. 2008. Improving word segmentation by simultaneously learn-
ing phonotactics. In 12th Conference on Computational Natural Language Learning, pages 65–72.
Association for Computational Linguistics, Morristown, NJ.

Blanchard, Daniel, Jeffrey Heinz, and Roberta Michnick Golinkoff. 2010. Modeling the contribution
of phonotactic cues to the problem of word segmentation. Journal of Child Language, 37.

Bortfeld, Heather, James Morgan, Roberta Golinkoff, and Karen Rathbun. 2005. Mommy and
me: Familiar names help launch babies into speech-stream segmentation. Psychological Science,
16(4):298–304.

Brandl, Holger, Britta Wrede, Frank Joublin, and Christian Goerick. 2008. A self-referential child-
like model to acquire phones, syllables and words from acoustic speech. Proceedings of the 7th
IEEE International Conference on Development and Learning, pages 31–36.

Brent, Michael. 1999. An efficient, probabilistically sound algorithm for segmentation and word
discovery. Machine Learning, 34:71–105.

Brent, Michael and Timothy Cartwright. 1996. Distributional regularity and phonotactic con-
straints are useful for segmentation. Cognition, 61(1-2):93–125.

Brent, Michael and Jeffrey Siskind. 2001. The role of exposure to isolated words in early vocabulary
development. Cognition, 81:B33–B44.

Cairns, Paul, Richard Shillcock, Nick Chater, and Joe Levy. 1997. Bootstrapping word boundaries:
A bottom-up corpus-based approach to speech segmentation. Cognitive Psychology, 33:111–153.

Cheng, Jimming and Michael Mitzenmacher. 2005. The markov expert for finding episodes in time
series. Proceedings of the Data Compression Conference.

Chomsky, Noam and Morris Halle. 1965. Some controversial questions in phonological theory.
Journal of Linguistics, 1:97–138.

50

Christiansen, Morten H, Joseph Allen, and Mark S Seidenberg. 1998. Learning to segment speech
using multiple cues: A connectionist model. Language and Cognitive Processes, 13(2/3):221–268.

Christiansen, Morten H, Christopher Conway, and Suzanne Curtin. 2005. Multiple-cue integration
in language acquisition: A connectionist model of speech segmentation and rule-like behavior.
Language Acquisition, pages 1–39.

Cohen, Paul and Niall Adams. 2001. An algorithm for segmenting categorical time series into
meaningful episodes. Lecture notes in computer science, pages 198–207.

Cohen, Paul, Niall Adams, and Brent Heeringa. 2007. Voting experts: An unsupervised algorithm
for segmenting sequences. Intelligent Data Analysis, 11(6):607–625.

Cole, Ronald and Jola Jakimik. 1980. A model of speech perception, pages 136–163. Lawrence
Erlbaum Associates, Hillsdale, NJ.

Daland, Robert. 2009. Word Segmentation, Word Recognition, and Word Learning: A Computa-
tional Model of First Language Acquisition. Ph.D. thesis.

de Marcken, Carl. 1995. Acquiring a lexicon from unsegmented speech. In Proceedings of the 33rd
Annual Meeting of the Association for Computational Linguistics, pages 311–313.

de Marcken, Carl. 1995. The unsupervised acquisition of a lexicon from continuous speech. Mas-
sachusetts Institute of Technology.

Demuth, Katherine. 1992. Acquisition of Sesotho, volume 3, pages 557–638. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Dixon, R. M. W. and Alexandra Y. Aikhenvald. 2002. Word: a typological framework, pages 1–41.
Cambridge University Press, Cambridge, UK.

Elman, Jeffrey L. 1990. Finding structure in time. Cognitive Science, 14(2):179–211.

Fleck, Margaret M. 2008. Lexicalized phonotactic word segmentation. In Proceedings of the 46th
Annual Meeting of the Association for Computational Linguistics, pages 130–138. Association
for Computational Linguistics, Morristown, NJ.

Gambell, Timothy and Charles Yang. 2004. Statistics learning and universal grammar: Model-
ing word segmentation. First Workshop on Psycho-computational Models of Human Language
Acquisition, page 49.

Goldsmith, JA. 2009. Segmentation and morphology. Blackwell Computational Linguistics and
Natural Language Processing Handbook, pages 1–41.

Goldwater, Sharon. 2007. Nonparametric Bayesian Models of Lexical Acquisition. Ph.D. thesis,
Brown University, Department of Cognitive and Linguistic Sciences.

Goldwater, Sharon, Thomas L Griffiths, and Mark Johnson. 2009. A bayesian framework for word
segmentation: Exploring the effects of context. Cognition, 112:21–54.

51

Halle, Morris. 1978. Knowledge unlearned and untaught: What speakers know about the sounds of
their language, pages 294–303. MIT Press, Cambridge, MA.

Harris, Zellig. 1954. Distributional structure. Word, 10(2/3):146—162.

Heinz, Jeffrey. 2007. Inductive Learning of Phonotactic Patterns. Ph.D. thesis, University of
California, Los Angeles, Department of Linguistics.

Hewlett, D and Paul Cohen. 2009. Bootstrap voting experts. Proceedings of the Twenty-first
International Joint Conference on Artificial Intelligence (IJCAI).

Hockema, Stephen A. 2006. Finding words in speech: An investigation of american english. Lan-
guage Learning and Development, 2(2):119–146.

Iwahashi, Naoto. 2006. Robots that learn language: Developmental approach to human-
machine conversations. Lecture Notes in Computer Science: Symbol Grounding and Beyond,
4211/2006:143–167.

Johnson, Mark. 2008a. Unsupervised word segmentation for Sesotho using adaptor grammars. In
Proceedings of the Tenth Meeting of Association for Computational Linguistics SIGMORPHON,
pages 20–27. Association for Computational Linguistics, Morristown, NJ.

Johnson, Mark. 2008b. Using adaptor grammars to identify synergies in the unsupervised acqui-
sition of linguistic structure. In Proceedings of the 46th Annual Meeting of the Association for
Computational Linguistics, pages 398–406. Association for Computational Linguistics, Morris-
town, NJ.

Jurafsky, Daniel and James Martin. 2008. Speech and Language Processing. Prentice-Hall, second
edition.

Jusczyk, Peter, Elizabeth Hohne, and Angela Baumann. 1999a. Infants’ sensitivity to allophonic
cues for word segmentation. Perception & psychophysics, 61(8):1465–1476.

Jusczyk, Peter, Derek Houston, and Mary Newsome. 1999b. The beginnings of word segmentation
in english-learning infants. Cognitive Psychology, 39:159–207.

Lu, Xiaofei. 2006. Hybrid Models for Chinese Unknown Word Resolution. Ph.D. thesis, Ohio State
University, Department of Linguistics.

MacWhinney, B and C Snow. 1985. The child language data exchange system. J Child Lang,
12(2):271–295.

Matthews, Peter. 1991. Morphology. Cambridge University Press, second edition.

Mattys, Sven and Peter Jusczyk. 2001. Phonotactic cues for segmentation of fluent speech by
infants. Cognition, 78:91–121.

Miller, Matthew and Alexander Stoytchev. 2008. Hierarchical voting experts: An unsupervised
algorithm for segmenting hierarchically structured sequences. Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, pages 1820–1821.

52

Miller, Matthew and Alexander Stoytchev. 2009. An unsupervised model of infant acoustic speech
segmentation. Proceedings of 9th International Conference on Epigenetic Robotics.

Olivier, Donald. 1968. Stochastic Grammars and Language Acquisition Mechanisms. Ph.D. thesis,
Harvard Univerity.

Saffran, Jenny R, Richard Aslin, and Elissa Newport. 1996. Statistical learning by 8-month-old
infants. Science, 274(5294):1926–1928.

Swingley, Daniel. 2005. Statistical clustering and the contents of the infant vocabulary. Cognitive
Psychology, 50(1):86–132.

Toft, Zoë. 2002. The phonetics and phonology of some syllabic consonants in Southern British
English. In Toft, Zoë, editor, Papers on Phonetics and Phonology: The Articulation, Acoustics
and Perception of Consonants, volume 28 of ZAS Papers in Linguistics, pages 111–144.

Venkataraman, Anand. 2001. A statistical model for word discovery in transcribed speech. Com-
putational Linguistics, 27(3):352–372.

Villing, R, J Timoney, T Ward, and J Costello. 2004. Automatic blind syllable segmentation for
continuous speech. Proceedings of ISSC.

Wolff, JG. 1977. The discovery of segments in natural language. British Journal of Psychology,
68:97–106.

Xie, Zhimin and Partha Niyogi. 2006. Robust acoustic-based syllable detection. In Proceedings of
the Ninth International Conference on Spoken Language Processing.

53

	Introduction
	Contributions
	Investigation of Sub-word Features
	Framework for Word Segmentation
	Phonological Word Evaluation
	Early Error Recovery & Prevention
	Accurate Incremental Segmenter

	Background & Related Work
	Terminology
	Learning Algorithms
	What Is a Word?

	Corpora
	Bernstein-Ratner (1987) Corpus
	Sesotho Corpus

	Common Features for Word Segmentation
	Familiar Words
	Phoneme N-grams
	Syllable N-grams
	Universal Constraints

	Unsupervised Word Segmentation
	Bayesian Models
	Connectionist Models
	Local Statistics

	Other Types of Language Segmentation
	Speech Recognition
	Supervised Approaches to Word Segmentation
	Morpheme Segmentation

	Progress
	PHOCUS Framework
	Components
	Instantiations

	Preliminary Experiments on Feature Utility
	Experimental Setup
	Features Implementations
	Evaluation Metrics
	Experiment 1: Supervised
	Experiment 2: How Much Training Is Necessary?
	Overall Results

	Results with Lexicon Enabled

	Moving Forward
	Fundamental Issues
	Handling Early Errors
	Combining Feature Scores

	Other Issues
	PHOCUS Instantiations
	Phonological Word Corpus
	Feature-Specific Issues

	Contributions
	PHOCUS Framework
	Investigation of Sub-word Features
	Phonological Word Evaluation
	Early Error Recovery & Prevention
	Accurate Incremental Segmenter

	Conclusion

